TIVE: Task-level and Instance-level Value Estimation
Less is More: Data Value Estimation for Visual Instruction Tuning [127.4] 視覚的命令データにおける冗長性を除去する新しいデータ選択手法を提案する。 LLaVA-1.5の実験では、約7.5%のデータしか使用していないアプローチが、フルデータ微調整モデルと同等の性能を達成できることが示されている。 論文参考訳(メタデータ) (Thu, 14 Mar 2024 16:47:25 GMT)
visual instruction datasetには不要・冗長なデータが多く含まれており、その重要性を評価して削減する手法を提案。「using only about 7.5% data can achieve comparable performance as the full-data fine-tuned model across seven benchmarks, even surpassing it on four of the benchmarks.」とのことで、非常に効果的に見える。