- Towards Zero-Label Language Learning [20.3]
本稿では自然言語処理(NLP)におけるゼロラベル学習について検討する。 トレーニング中、どこにでも人間の注釈付きデータを使用しず、モデルが純粋に合成データに基づいて訓練される。 GPT-3における数発の推論の成功に触発されて、教師なしデータ生成というトレーニングデータ生成手順を提案する。
論文 参考訳(メタデータ) (Sun, 19 Sep 2021 19:00:07 GMT)- 事前学習された言語モデル(GLM: Gigantic Language Model)で合成データを作成、それをもとにして学習する手法の提案。ラベル付きデータとの組み合わせによってSuperGLUEで優れた性能(現時点で2位)が達成できている。
- 「リアルなデータではラベルが入力相当データの後に来るとは限らない、プロンプトは最適ではない」にそうだよなーと思った。
- アプローチとしてはSTraTAに近いように思う。巨大言語モデルから必要なデータを引き出そうとしているように見え面白い。
- 事前学習された言語モデル(GLM: Gigantic Language Model)で合成データを作成、それをもとにして学習する手法の提案。ラベル付きデータとの組み合わせによってSuperGLUEで優れた性能(現時点で2位)が達成できている。