コンテンツへスキップ
- NoMIRACL: Knowing When You Don’t Know for Robust Multilingual Retrieval-Augmented Generation [92.5]
Retrieval-augmented Generation (RAG) は、外部の知識ソースを活用して、事実の幻覚を減らすことで、大きな言語モデル(LLM)を出力する。 NoMIRACLは18言語にまたがるRAGにおけるLDM堅牢性を評価するための人為的アノテーション付きデータセットである。 評価の結果,GPT-4はフランス語や英語などの高リソース言語で頻繁に幻覚を呈することがわかった。
論文 参考訳(メタデータ) (Mon, 18 Dec 2023 17:18:04 GMT)
- RAGにおける頑健性のマルチリンガルなベンチマーク。 hallucination rateとerror rateがメトリクス。GPT-4のbase lineがあるが「GPT-4 achieves a high 33.2% hallucination rate on the non-relevant subset and 14.9% error rate on the relevant NoMIRACL split, highlighting that GPT-4 finds it challenging to dismiss non-relevant passages over relevant passages in first-stage retrieved information.」と十分とは言えなさそうな結果。日本語はhallucination rateが高くerror rateが低い結果となっている。
- リポジトリはproject-miracl/nomiracl: A multilingual dataset to evaluate LLM robustness in RAG setup against first-stage retrieval errors on 18 languages. (github.com)
- You Don’t Need Robust Machine Learning to Manage Adversarial Attack Risks [31.1]
機械学習モデルを不規則な予測に変換する能力は驚くべきものだ。 現行の緩和には高いコストが伴い、同時にモデルの精度が低下する。 これは、実際にこれらの攻撃を緩和する方法、運用デプロイメントのリスク、そしてそれらのリスクをどのように管理するか、という視点で行われます。
論文 参考訳(メタデータ) (Fri, 16 Jun 2023 16:32:27 GMT)
- 衝撃的なタイトルだが、「Our work elucidates that not all situations require robust machine learning to defend against adversarial attacks, and that a larger risk assessment should be performed.」「In real-life deployments, the cost of adding robustness may exceed its benefits.」とのことで結論は納得のいくものとなっている。不必要に頑張る必要はない。
- AI Maintenance: A Robustness Perspective [91.3]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。 本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。 我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (Sun, 8 Jan 2023 15:02:38 GMT)
- AIメンテナンスに関するフレームワークの提案。妥当・合理的かは議論が分かれると思うが、頭の整理をするには有用。
- Fairness Increases Adversarial Vulnerability [50.9]
フェアネスとロバストネスの間に二分法が存在することを示し、フェアネスを達成するとモデルロバストネスを減少させる。 非線形モデルと異なるアーキテクチャの実験は、複数の視覚領域における理論的発見を検証する。 フェアネスとロバストネスの良好なトレードオフを達成するためのモデルを構築するための,シンプルで効果的なソリューションを提案する。
論文 参考訳(メタデータ) (Wed, 23 Nov 2022 01:46:22 GMT)
- 公平性と頑健性はトレードオフの関係にあり、良好なポイントを見つけるための手法を提案している。ある程度解決策も提案されているとはいえ、性能はともかく頑健性が落ちるのはつらいなーと思う。
- A Light Recipe to Train Robust Vision Transformers [34.5]
我々は、ViTが、回避攻撃に対する機械学習モデルの堅牢性を改善するための基盤となるアーキテクチャとして機能することを示します。 我々は、ImageNetデータセットのサブセットに関する厳密なアブレーション研究を用いて、独自の逆トレーニングレシピを用いて、この目的を達成する。 提案手法は,完全なImageNet-1k上でのViTアーキテクチャと大規模モデルの異なるクラスに一般化可能であることを示す。
論文 参考訳(メタデータ) (Thu, 15 Sep 2022 16:00:04 GMT)- 堅牢なViT実現に向けた学習方法の提案。XCiTをベースにシンプルなデータ拡張、warmupとdecayを変更。様々な手法との比較が参考になる。
- GRIT: General Robust Image Task Benchmark [32.6]
本稿では,GRIT(General Robust Image Task)ベンチマークを紹介する。 GRITは、様々な画像予測タスク、概念、データソースにわたるビジョンシステムの性能、堅牢性、キャリブレーションを評価する。 ビジョンモデルによって学習されたスキルや概念を徹底的に評価するための統一プラットフォームを提供することにより、GRITが高性能で堅牢な汎用的なビジョンシステムの開発を促進することを期待する。
論文 参考訳(メタデータ) (Thu, 28 Apr 2022 17:13:23 GMT)
- How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective [74.5]
入力クエリと出力フィードバックだけでブラックボックスモデルを堅牢化する方法? 我々は,ブラックボックスモデルに適用可能な防御操作の一般的な概念を提案し,一階法(FO)認定防衛技術である denoized smoothing (DS) のレンズを用いて設計する。 我々は,Zeroth-Order AutoEncoder-based Denoised Smoothingが既存のベースラインよりも精度,堅牢性,クエリの複雑さを向上できることを実証的に示す。
論文 参考訳(メタデータ) (Sun, 27 Mar 2022 03:23:32 GMT)
- Vision Checklist: Towards Testable Error Analysis of Image Models to Help System Designers Interrogate Model Capabilities [26.2]
Vision Checklistは、堅牢性評価のためにシステムデザイナが使用可能なレポートを生成するために、モデルの能力を疑うためのフレームワークである。 我々のフレームワークは、Tinyimagenet、CIFAR10、CIFAR100、Camelyon17のような複数のデータセットと、ViTやResnetのようなモデルで評価されている。
論文 参考訳(メタデータ) 参考訳(全文) (Thu, 27 Jan 2022 17:20:16 GMT)- 画像系モデルの堅牢性を評価するフレームワークの提案。論文中の「Due to the high uncertainty in deployment environments, measures based on a small set of hold-out data are not enough for model evaluation.」という指摘の通り、テストセットによる評価だけでは社会実装には不十分でモデルの能力を疑う(限界を知っておく)のはとても重要。
- ソースコードなどは公開予定とのこと。
- Measure and Improve Robustness in NLP Models: A Survey [23.5]
堅牢性は視覚やNLPなどのアプリケーションで別々に研究されており、様々な定義、評価、緩和戦略が研究の複数のラインで行われている。 まず、ロバスト性の定義を複数結合し、その後、ロバスト性障害を特定し、モデルのロバスト性を評価する様々な作業ラインを統一します。 我々は、NLPモデルの堅牢性を効果的に改善する方法をより体系的な視点で、データ駆動型、モデル駆動型、インダクティブプライオリベースである緩和戦略を提案する。
論文 参考訳(メタデータ) 参考訳(全文) (Wed, 15 Dec 2021 18:02:04 GMT)- 社会実装で重要な自然言語処理モデル頑健性について評価方法や、改善方法をまとめたサーベイ。本文は8ページと短めだが簡潔にまとまっておりベンチマークなども参考になる。
- RobustART: Benchmarking Robustness on Architecture Design and Training Techniques [170.3]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。 アーキテクチャ設計とトレーニングのテクニックが堅牢性にどのように影響するかに関する包括的な研究はない。 本稿では,ImageNet上での包括性調査ベンチマークを提案する。
論文 参考訳(メタデータ) (Wed, 15 Sep 2021 08:15:57 GMT)- ImageNetをベースにした頑健性に関するベンチマーク/APIの提案。成果自体も有用だと思うが、最新のものを含む既存アーキテクチャやテクニックを幅広く分析しており非常に参考になる内容。
- 広範な分析を行った結果「①TransformerとMLP-MixerではAdversarial Trainingで扱っているノイズ(natural, system, adversarial noise)に対する頑健性、精度が向上する。」「②同程度のサイズであればnatural noiseとsystem noiseに対してはCNN > Transformer > MLP-Mixerの順で頑健、adversarial noiseに対してはTransformer > MLP-Mixer > CNNの順に頑健」「③ほぼすべてのモデルについてモデルサイズの増加でよりロバストになる。ただし、軽量化を狙ったアーキテクチャ(EfficientNetやMobileNetV2/V3)の一部はロバスト性が向上しない」がわかったとのこと。
- CNNとTransformerの比較結果は局所的な特徴量に強いCNNと大域を見れるTransformerの差異によるものだろうか。モデルサイズが大きくなるとよりロバストになるというのは過去にも指摘されていたが、軽量モデルではそれが当てはまらないというのも中身を詳細に分析したくなる。大規模の比較なのでほかにもモデル間の差異がありそうで面白い。
- プロジェクトサイトはhttp://robust.art/