知識ベースQA、テキスト生成のサーベイ

  • A Survey on Complex Knowledge Base Question Answering: Methods, Challenges and Solutions [41.7]
    知識ベース質問応答(KBQA)は、知識ベース(KB)に関する質問に答えることを目的としている。 複雑なKBQAの典型的な課題と解決策を精巧に要約する。
    論文  参考訳(メタデータ)   (Tue, 25 May 2021 03:45:30 GMT)
    • 知識ベースを用いたQuestion Answeringタスクのおける意味解析、情報検索などのアプローチを中心としたサーベイ。カテゴリ分けなど参考になる。
  • Pretrained Language Models for Text Generation: A Survey [46.0]
    本稿では、テキスト生成のための事前学習言語モデル(PLM)のトピックにおいて達成された大きな進歩について概説する。 我々は、既存のPLMを異なる入力データに適応させ、生成したテキストの特別な特性を満たす方法について論じる。
    論文  参考訳(メタデータ)   (Tue, 25 May 2021 01:19:47 GMT)
    • 事前学習モデルをテキスト生成に使うという研究のサーベイ。この分野を概観するのによい資料。実用にはControllable Generationは非常に重要だと思うのだが道半ばという印象。

要約モデルBASS

  • BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.5]
    BASSは、統合されたセマンティックグラフに基づく抽象的な要約を促進するためのフレームワークである。 文書表現と要約生成の両方を改善するために,グラフベースのエンコーダデコーダモデルを提案する。 実験結果から,提案アーキテクチャは長期文書および複数文書要約タスクに大幅な改善をもたらすことが示された。 
    論文  参考訳(メタデータ)  参考訳(全文) (Tue, 25 May 2021 16:20:48 GMT)
    • グラフを用いた要約モデル。BARTなどと比べても悪くない結果。