The Who in Explainable AI: How AI Background Shapes Perceptions of AI Explanations [14.3] 我々は、AIの背景と背景のない2つの異なるグループが、異なるタイプのAI説明を知覚する方法について、混合方法論による研究を行う。 私たちは、信頼、知性、理解可能性、第二のチャンス、友好性の5つの側面に沿って、知覚が何であるかを定量的に共有します。 論文参考訳(メタデータ) (Wed, 28 Jul 2021 17:32:04 GMT)
「AI group seemed to have an instinctual response to numerical values; they assumed that the numbers possess all the information needed to manipulate, diagnose, and reverse engineer.」というのは非常に重要(で怖い)指摘。
MWP-BERT: A Strong Baseline for Math Word Problems [47.5] 数学語問題( Math word problem、MWP)とは、自然言語による問題記述の列を、実行可能な数学方程式に変換するタスクである。 近年, MWP の逐次モデル化は, 文脈理解の数学的側面から評価されているが, 事前学習言語モデル (PLM) はMWP の解法として研究されていない。 我々はMWP-BERTを導入し、テキスト記述と数理論理の整合性を捉える事前訓練されたトークン表現を得る。 論文参考訳(メタデータ) (Wed, 28 Jul 2021 15:28:41 GMT)
Text is Text, No Matter What: Unifying Text Recognition using Knowledge Distillation [41.4] 私たちは、2つの最先端のSTR(Scene Text Recognition)モデルとHTR(Handwriting Text Recognition)モデルと好適に競合できる単一のモデルを目指しています。 まず、STRモデルとHTRモデルの相互利用が、それらの固有の課題の違いにより、大幅な性能低下を引き起こすことを示す。 次に、知識蒸留(KD)に基づく枠組みを導入することで、彼らの連合に取り組みます。 論文参考訳(メタデータ) (Mon, 26 Jul 2021 10:10:34 GMT)
STRとHTRは似て非なるタスクであり、通常はモデルを相互利用できない(大幅な制度劣化が発生する)。蒸留の枠組みを用い通常のロス関数と4つのロス関数(Logits’ Distillation Loss, Character Localised Hint Loss, Attention Distillation Loss, Affinity Distillation Loss)を用いてSTRをHTR統合、生徒となるモデルを構築することで性能が向上するとのこと。
Modelling Latent Translations for Cross-Lingual Transfer [47.6] 従来のパイプラインの2つのステップ(翻訳と分類)を1つのモデルに統合する新しい手法を提案する。 我々は,多言語NLUタスクにおける新しい潜時翻訳モデルの評価を行った。 ゼロショットと数ショットの学習設定の両方で、平均2.7の精度ポイントのゲインを報告します。 論文参考訳(メタデータ) (Fri, 23 Jul 2021 17:11:27 GMT)
NLU (Natural Language Understanding)タスクを解く際にニューラル機械翻訳を組み込むことでマルチリンガル性を得るモデルの提案。この手のタスクでは(大規模事前学習を行った)マルチリンガルモデルの採用が多いが機械翻訳の組み込みは妥当で効果的な構造のように思える。実際、マルチリンガルなタスクにおけるzero-shot、few-shotの結果も良い。
To Ship or Not to Ship: An Extensive Evaluation of Automatic Metrics for Machine Translation [6.0] システムレベルの品質ランク付けを行う上で,どの指標が最も精度が高いかを検討する。 BLEUのみの使用は、改善されたモデルの開発に悪影響を及ぼしたことを示す。 論文参考訳(メタデータ) (Thu, 22 Jul 2021 17:22:22 GMT)
When a crisis strikes: Emotion analysis and detection during COVID-19 [96.0] 感情をラベル付けした1万ツイートのCovidEmoを紹介します。 事前学習された言語モデルがドメインや危機をまたいでどのように一般化するかを検討する。 論文参考訳(メタデータ) (Fri, 23 Jul 2021 04:07:14 GMT)