GPTスタイルのモデルに対するニューロンタイプの同定とROME(Rank-One Model Editing)による編集

  • Locating and Editing Factual Knowledge in GPT [32.3]
    我々は,モデルの事実予測を変更可能なニューロン活性化を同定するための因果的介入を開発する。 大きなGPTスタイルのモデルでは、我々が仮定する2つの異なるニューロンの集合(抽象的な事実を知る、具体的な言葉を言う)と一致している。 この洞察は、モデル重みに格納された事実を編集する新しい方法であるROMEの開発を刺激する。
    論文  参考訳(メタデータ)   (Thu, 10 Feb 2022 18:59:54 GMT)

TopClus: PLMを用いたトピッククラスタリング

SuperGen: 言語モデルからのデータ生成

センサーデータからのメンタルストレス検出のサーベイ

  • Mental Stress Detection using Data from Wearable and Non-wearable Sensors: A Review [11.1]
    ヒトのストレス反応を測定する方法は、ウェアラブルと非ウェアラブルセンサーのデータを用いて観察された主観的アンケートと客観的マーカーを含むことができる。 各種情報源からの関連データを利用して, ストレス検出手法が人工知能の恩恵を受ける方法について検討する。
    論文  参考訳(メタデータ)   (Mon, 7 Feb 2022 09:48:46 GMT)
    • ウェアラブル(脳波や筋電、心拍など)、非ウェアラブル(瞳孔、音声、熱など)センサーからストレス反応を検出できるかのサーベイ。本文だけで67ページと広範な内容。