lfqa_discourse

Look for the Change: 動画からの状態変化検知

  • Look for the Change: Learning Object States and State-Modifying Actions from Untrimmed Web Videos [55.6]
    人間の行動は、しばしば「リンゴを切る」や「コーヒーを飲む」といった対象状態の変化を引き起こす。 我々は、対応する対象状態とともに、状態修正動作を協調学習するための自己教師型モデルを開発する。 本モデルでは,ノイズ適応重み付けモジュールを少数の注釈付静止画像で教師する。
    論文  参考訳(メタデータ)   (Tue, 22 Mar 2022 11:45:10 GMT)

GNNに対するXAIのサーベイ

  • Explainability in Graph Neural Networks: An Experimental Survey [12.4]
    グラフ表現学習のためのグラフニューラルネットワーク(GNN)が広く開発されている。 GNNは、その基盤となるメカニズムを理解できないため、ブラックボックスの問題に悩まされる。 GNNによる意思決定を説明するために、いくつかのGNN説明可能性法が提案されている。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 17 Mar 2022 11:25:41 GMT)
    • Graph Neural Networkを対象にしたXAIのサーベイ。

A Roadmap for Big Model

  • A Roadmap for Big Model [390.6]
    BMの全般的な進歩を整理し、フォローアップ研究を導く研究成果の欠如がある。 本稿では,BM技術そのものだけでなく,BM訓練やBM応用の前提条件についても述べる。 データ,知識,コンピュータシステム,並列学習システム,言語モデル,ビジョンモデル,マルチモーダルモデル,理論と解釈可能性,常識推論,信頼性とセキュリティ,ガバナンス,評価,機械翻訳,テキスト生成,対話,タンパク質研究の4分野に16のBM関連トピックを紹介する。
    論文  参考訳(メタデータ)   (Sat, 26 Mar 2022 15:38:00 GMT)
    • 様々な分野での大規模モデルに関する包括的な論文(サーベイ)。100人近くの著者、本文140ページ、引用数1637と大作。全部読むのは大変だが、興味のある分野のみの参照でもとても参考になるものだと思う。

BigDetection: Object detection用大規模データセット

Authorship-Deobfuscation

  • A Girl Has A Name, And It’s … Adversarial Authorship Attribution for Deobfuscation [9.6]
    既存のオーサシップ難読化アプローチは、敵の脅威モデルを考慮していない。 このギャップを埋めるために, 難読化に対する敵対的著作者帰属の問題を検討する。 その結果,既存の難読化者の有効性を20~30%から5~10%に低下させることができた。 私たちの結果は、難読化に抵抗するより強固な難読化アプローチの必要性を強調する
    論文  参考訳(メタデータ)   (Tue, 22 Mar 2022 16:26:09 GMT)

Cross-Lingual Summarizationのサーベイ

  • A Survey on Cross-Lingual Summarization [43.9]
    言語間の要約は、異なる言語における文書の1つの言語で要約を生成するタスクである。 グローバル化の背景から、この課題は計算言語学コミュニティから注目を集めている。 この分野におけるデータセット、アプローチ、課題に関する最初の体系的批判的レビューを提示する。
    論文  参考訳(メタデータ)   (Wed, 23 Mar 2022 16:24:21 GMT)
    • クロスリンガル要約のサーベイ。日本語にとっては極めて重要なタスクだと思う。
      • 英語のドキュメントに対して日本語の抄訳がある事例は多く、データセットを作りやすいのではないかと思ったりもする。。。

IAM: 議論マイニングのための包括的な大規模なデータセット

  • IAM: A Comprehensive and Large-Scale Dataset for Integrated Argument Mining Tasks [59.5]
    本稿では,一連の議論マイニングタスクに適用可能なIAMという,包括的で大規模なデータセットを提案する。 データセットの70k近い文は、引数特性に基づいて完全に注釈付けされている。 議論準備プロセスに関連する2つの新しい統合された議論マイニングタスクを提案する。(1) 姿勢分類付きクレーム抽出(CESC)と(2) クレーム・エビデンス・ペア抽出(CEPE)である。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 24 Mar 2022 03:27:52 GMT)
    • 議論マイニングのため、 Claim Extraction with Stance Classification (CESC) と Claim-Evidence Pair Extraction (CEPE)タスクを設定、データセットを作成、ベースラインを提供
      • IAM = Integrated Argument Mining ?

小さなデータで効率的に学習するためのDataset distillation

  • Dataset Distillation by Matching Training Trajectories [75.9]
    そこで本研究では,実データと同じような状態にネットワークを誘導するために,蒸留データを最適化する新しい定式化を提案する。 ネットワークが与えられたら、蒸留データを何回か繰り返して訓練し、合成訓練されたパラメータと実データで訓練されたパラメータとの距離に関して蒸留データを最適化する。 本手法は既存の手法よりも優れており,高解像度の視覚データを蒸留することができる。
    論文  参考訳(メタデータ)   (Tue, 22 Mar 2022 17:58:59 GMT)

WuDaoMM: 大規模な画像・テキストのマルチモーダルデータセット

  • WuDaoMM: A large-scale Multi-Modal Dataset for Pre-training models [2.6]
    我々はWuDaoMMという大規模マルチモーダルコーパスを導入し、6億5000万以上の画像テキストペアを網羅した。 画像とキャプションの相関が弱い複数のWebページから、約6億のデータを収集する。 具体的には、画像とキャプションの相関が弱い複数のWebページから約6億のデータを収集し、他の5000万の強い関連画像テキストペアを高品質なグラフィックWebサイトから収集する。 また、WuDaoMMのベースバージョンを500万の強相関画像テキストペアでリリースし、一般的なクロスモーダルモデル事前トレーニングをサポートするのに十分です。
    論文  参考訳(メタデータ)  参考訳(全文)  (Tue, 22 Mar 2022 06:12:20 GMT)
    • テキスト・画像の大規模データセット。研究目的にのみ利用可能。
    • プロジェクトサイトはresource (wudaoai.cn)