コンテンツへスキップ
- Search-in-the-Chain: Towards Accurate, Credible and Traceable Large Language Models for Knowledge-intensive Tasks [108.2]
本稿では,マルチホップ質問応答のためのLLM生成コンテンツの正確性,信頼性,トレーサビリティを向上させるために,検索・イン・ザ・チェイン(SearChain)と呼ばれる新しいフレームワークを提案する。 SearChainは大規模言語モデル(LLM)と情報検索(IR)を深く統合したフレームワークである
論文 参考訳(メタデータ) (Fri, 5 May 2023 02:35:48 GMT)
- LLM + information retrievalでマルチホップな問題を解くフレームワークの提案、複数のベンチマークで優れた性能
- プロンプト自体・使い方・複数回の問い合わせを工夫していくのはまだまだ続きそうで、LLMの鉱脈は深そう
- A Comprehensive Picture of Factors Affecting User Willingness to Use Mobile Health Applications [62.6]
本研究の目的は,mHealthアプリのユーザ受け入れに影響を与える要因を検討することである。 利用者のデジタルリテラシーは、個人情報を共有するオンライン習慣に続き、使用意欲に最も強い影響を与える。 居住国、年齢、民族、教育などの利用者の人口統計学的背景は、顕著な緩和効果がある。
論文 参考訳(メタデータ) (Wed, 10 May 2023 08:11:21 GMT)
- モバイルヘルスアプリケーションを受け入れるか否かについて、どのような因子が重要か調べた論文。複数の国が対象だが、残念ながら日本は入っていない。
- 「our study reveals that users’ privacy concern had only a moderate impact, which was outweighed by users’ digital literacy.」というのはやや意外な結果。日本だと話は別だったりするのだろうか。