LIMA: Less Is More for Alignment

  • LIMA: Less Is More for Alignment [112.9]
    65B パラメータ LLaMa 言語モデル LIMA のトレーニングを行う。 LIMAは、非常に強力なパフォーマンスを示し、少数の例から特定のレスポンスフォーマットに従うことを学ぶ。 制御されたヒトの研究では、LIMAからの反応は43%の症例において、GPT-4に等しいか、厳格に好まれる。
    論文  参考訳(メタデータ)   (Thu, 18 May 2023 17:45:22 GMT)
  • 強力なベースモデルとよくキュレーションされた1000個の例があれば複雑なクエリを扱えるChatGPTのような動きが可能という報告。
  • 「Taken together, these results strongly suggest that almost all knowledge in large language models is learned during pretraining, and only limited instruction tuning data is necessary to teach models to produce high quality output.」ということで事前学習モデルの重要性は他の報告と整合的。


  • How Do In-Context Examples Affect Compositional Generalization? [86.6]
    本稿では,コンテクスト内構成一般化を検証するためのテストスイートであるCoFeを提案する。 構成一般化性能は、文脈内例の選択によって容易に影響を受けることが判明した。 我々の系統実験は、文脈内サンプルは、テストケースと構造的に似ており、互いに異なっており、個別に単純であることを示します。
    論文  参考訳(メタデータ)   (Thu, 25 May 2023 02:34:40 GMT)
  • in context learningのテストスイートの提案、詳細な分析がなされており非常に参考になる。「Our systematic experiments indicate that in-context examples should be structurally similar to the test case, diverse from each other, and individually simple.」とあるのは直感的にもそうだとは思うが、それぞれの要素について検証がなされているのが凄い。
  • リポジトリはContextualSP/cofe at master · microsoft/ContextualSP · GitHub