コンテンツへスキップ
- Towards Open Vocabulary Learning: A Survey [122.4]
ディープニューラルネットワークは,セグメンテーションやトラッキング,検出といった,さまざまなコアタスクにおいて,目覚ましい進歩を遂げている。 近年、視覚言語事前学習の急速な進歩により、オープンな語彙設定が提案されている。 本稿では,その分野における最近の発展を要約し分析し,オープンな語彙学習の徹底的なレビューを行う。
論文 参考訳(メタデータ) (Wed, 28 Jun 2023 02:33:06 GMT)
- open vocabulary object detection やsegmentaitonといったOpen Vocabulary Learningのサーベイ。リポジトリがGitHub – jianzongwu/Awesome-Open-Vocabularyにあり、論文一覧やカテゴリなど非常に参考になる。
- Large Language Models Enable Few-Shot Clustering [88.1]
大規模言語モデルは、クエリ効率が良く、数発の半教師付きテキストクラスタリングを可能にするために、専門家のガイダンスを増幅できることを示す。 最初の2つのステージにLLMを組み込むことで、クラスタの品質が大幅に向上することがわかった。
論文 参考訳(メタデータ) (Sun, 2 Jul 2023 09:17:11 GMT)
- 大規模言語モデルを用いたクラスタリング手法提案。「GPT-3.5 is remarkably more effective than a true oracle pairwise constraint oracle at this price point; unless at least 2500 pairs labeled by a true oracle are provided, pairwise constraint KMeans fails to deliver any value for entity canonicalization.」とのことでLLMに支援されたクラスタリングは非常に有効としている。
- リポジトリはGitHub – viswavi/few-shot-clustering