FunQA, Movie101

  • FunQA: Towards Surprising Video Comprehension [34.3]
    本稿では,楽しみビデオに基づく動画推論の深度評価と深度向上を目的としたデータセットFunQAを紹介する。 FunQAはHumorQA、CreativeQA、MagicQAの3種類の驚くべきビデオをカバーしている。 各サブセットに対して、直感的正当性、詳細な映像記述、反直感性に関する推論におけるモデルの能力を評価するために設計された厳密なQAタスクを確立する。 FunQAベンチマークは4.3Kのビデオクリップから派生した312Kの無料テキストQAペアで構成され、合計24時間に及ぶ。
    論文  参考訳(メタデータ)   (Mon, 26 Jun 2023 17:59:55 GMT)
  • ビデオへのQAデータセット。QAテキスト自体は問題ないと思うが、ビデオ部分は著作権的に大丈夫なんだろうか?(不明点が多いのでリポジトリへのリンクは貼っていない)
  • Movie101: A New Movie Understanding Benchmark [47.2]
    大規模な中国の映画ベンチマーク「Movie101」を構築した。 映画ナレーション評価のためのMNScore(Movie Narration Score)と呼ばれる新しい指標を提案する。 両タスクにおいて,提案手法は外部知識をうまく活用し,慎重に設計したベースラインよりも優れた性能を発揮する。
    論文  参考訳(メタデータ)   (Tue, 27 Jun 2023 11:42:44 GMT)
  • こちらはナレーション作成のタスクを対象とした映画のデータセット
  • 同じく著作権的な疑問点があるためリンクは貼っていない

この手のタスクは重要であり今後有望な分野なのだろうと思うが、既存の映像を使うのはリスクが高い気がする。研究用に頑張って映像から作るしかないのではないかと思わなくはない。

Recommender Systems in the Era of Large Language Models (LLMs)

  • Recommender Systems in the Era of Large Language Models (LLMs) [31.5]
    大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。 我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
    論文  参考訳(メタデータ)   (Wed, 5 Jul 2023 06:03:40 GMT)
  • LLM時代の推薦システムに関すルサーベイ。この分野にもLLMの影響は大きく、ChatGPTをバックボーンにしている研究も多い。