Large Language Models Enable Few-Shot Clustering [88.1] 大規模言語モデルは、クエリ効率が良く、数発の半教師付きテキストクラスタリングを可能にするために、専門家のガイダンスを増幅できることを示す。 最初の2つのステージにLLMを組み込むことで、クラスタの品質が大幅に向上することがわかった。 論文参考訳(メタデータ) (Sun, 2 Jul 2023 09:17:11 GMT)
大規模言語モデルを用いたクラスタリング手法提案。「GPT-3.5 is remarkably more effective than a true oracle pairwise constraint oracle at this price point; unless at least 2500 pairs labeled by a true oracle are provided, pairwise constraint KMeans fails to deliver any value for entity canonicalization.」とのことでLLMに支援されたクラスタリングは非常に有効としている。