Model Context Protocol (MCP), QwQ, OLMo 2

先週も様々なニュースがあったが、注目はAnthropicのModel Context Protocolである。 Introducing the Model Context Protocol \ AnthropicIntroduction – Model Context Protocol

ザックリとはLLMと外部データやツールを統合するためのプロトコルである。外部ツール利用やメモリの拡張利用などを前提としたLLMを構築する場合、この手の標準があるかないかは重要。MCPがデファクトスタンダードとなれるか興味津々。

公開モデル関連では極めて性能の高いQwen with Questions(QwQ)、以前取り上げたDolmaとOLMo – arXiv最新論文の紹介のver 2であるOLMo 2に要注目である。O1 Replication JurneyやTULU3もだが、どのような手法、アプローチで性能が上がるのかなどをオープンにした取り組みの価値は高い。

  • O1 Replication Journey — Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson? [30.9]
    本稿では,OpenAIのO1モデル機能を複製する現在のアプローチについて,批判的な考察を行う。 O1のAPIからの単純な蒸留と教師付き微調整を組み合わせることで、複雑な数学的推論タスクにおいて優れた性能が得られることを示す。
    論文  参考訳(メタデータ)   (Mon, 25 Nov 2024 15:31:27 GMT)
  • OpenAI o1に関する研究、Fugu-MT 論文翻訳(概要): O1 Replication Journey: A Strategic Progress Report — Part 1からのPart2。「While our previous work (Part 1 (Qin et al , 2024)) explored the fundamental technical path to O1 replication, this study reveals how simple distillation from O1’s API, combined with supervised fine-tuning, can achieve superior performance on complex mathematical reasoning tasks.」はまぁいいとして「Notably, despite training only on mathematical problem-solving data, our models demonstrated strong generalization to open-ended QA tasks and became significantly less susceptible to sycophancy after fine-tuning.」は驚き。
  • リポジトリはGitHub – GAIR-NLP/O1-Journey: O1 Replication Journey: A Strategic Progress Report – Part I
  • TÜLU 3: Pushing Frontiers in Open Language Model Post-Training [94.1]
    我々は、完全にオープンな最先端の訓練後モデルであるT”ULU 3を紹介する。 T”ULU 3はLlama 3.1ベースモデルをベースにしており、Llama 3.1、Qwen 2.5、Mistral、さらにGPT-4o-mini、Claude 3.5-Haikuといったクローズドモデルにも勝っている。
    論文  参考訳(メタデータ)   (Fri, 22 Nov 2024 18:44:04 GMT)
  • リポジトリはGitHub – allenai/open-instruct

Beyond Examples: High-level Automated Reasoning Paradigm in In-Context Learning via MCTS

  • Beyond Examples: High-level Automated Reasoning Paradigm in In-Context Learning via MCTS [25.6]
    HiAR-ICLは特定の例から抽象的な思考パターンへとシフトする。 適切な思考カードと動的に一致する認知複雑性フレームワークを開発する。
    論文  参考訳(メタデータ)   (Wed, 27 Nov 2024 16:19:00 GMT)
  • 「(1) define atom reasoning actions, (2) construct thought cards via MCTS, (3) select reasoning patterns, and (4) solve and verify」からなるICLフレームワークの提案。(1)では「System Analysis (SA)」「One-Step Thought (OST)」「Chain-of-Thought (CoT)」「Divide and Conquer (DC)」「(a5) Self-Reflection and Refinement (SRR)」の5種類を定義。
  • 「HiAR-ICL, a High-level Automated Reasoning paradigm in ICL」という名称であるが、ICLというよりAgenticな動作に思える。もちろん性能は上がりそう。

VBench++: Comprehensive and Versatile Benchmark Suite for Video Generative Models 

LLM Augmentations to support Analytical Reasoning over Multiple Documents