DRS: Deep Question Reformulation With Structured Output

  • DRS: Deep Question Reformulation With Structured Output [114.1]
    大規模な言語モデルは、質問の解答不能を識別するが、質問の修正を支援する能力は欠如している。 DRS:Deep Question Reformulation with Structured Outputを提案する。 提案手法は, GPT-3.5 の修正精度を 23.03% から 70.42% に向上させ, Gemma2-9B などのオープンソースの大規模言語モデルのスコアを 26.35% から 56.75% に向上させる。
    論文  参考訳(メタデータ)   (Wed, 27 Nov 2024 02:20:44 GMT)
  • 質問を修正する手法の提案。「More importantly, according to Faustini et al (2023), in a large-scale industrial experiment,rephrasing unanswerable questions posed to virtual assistants significantly enhances the user experience for millions, which highlights the importance of effectively leveraging LLMs to assist people in question reformulation.」とも書かれているが、応用上ほしい場面があるのは確か。この論文ではentity extraction, dfs combination search with question generation, final candidate selectionと問題を分割しながら特殊法を提案している。
  • リポジトリはGitHub – Lizhecheng02/DRS: Repository for our paper “DRS: Deep Question Reformulation With Structured Output”.

Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision 

  • Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.4]
    本稿では、推論と批判モデルの役割を分離する2人プレイヤパラダイムを提案する。 まず、批判データを収集する自動化およびスケーラブルなフレームワークであるAutoMathCritiqueを提案する。 テスト時間における難解なクエリに対するアクターのパフォーマンスを,批判モデルが一貫して改善することが実証された。
    論文  参考訳(メタデータ)   (Mon, 25 Nov 2024 17:11:54 GMT)
  • 「flawed reasoning path construction, critique generation, and data filtering」の3ステージからなるフレームワークAutoMathCritiqueでデータを構築、fine tuningするとともに、「Motivated by the insights of test-time, we introduce the critique model into the actor model’s exploration and learning process, introducing a critique-in-the-loop self-improvement method」を適用して効果を確認。 critique modelの有効性が分かる結果に見える(が、この構築は容易ではないかもしれない)
  • リポジトリはAutoMathCritique

Training and Evaluating Language Models with Template-based Data Generation