Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision 

  • Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.4]
    本稿では、推論と批判モデルの役割を分離する2人プレイヤパラダイムを提案する。 まず、批判データを収集する自動化およびスケーラブルなフレームワークであるAutoMathCritiqueを提案する。 テスト時間における難解なクエリに対するアクターのパフォーマンスを,批判モデルが一貫して改善することが実証された。
    論文  参考訳(メタデータ)   (Mon, 25 Nov 2024 17:11:54 GMT)
  • 「flawed reasoning path construction, critique generation, and data filtering」の3ステージからなるフレームワークAutoMathCritiqueでデータを構築、fine tuningするとともに、「Motivated by the insights of test-time, we introduce the critique model into the actor model’s exploration and learning process, introducing a critique-in-the-loop self-improvement method」を適用して効果を確認。 critique modelの有効性が分かる結果に見える(が、この構築は容易ではないかもしれない)
  • リポジトリはAutoMathCritique

SELU: Self-Learning Embodied MLLMs in Unknown Environments

  • SELU: Self-Learning Embodied MLLMs in Unknown Environments [35.6]
    マルチモーダルな大言語モデル(MLLM)は、強力な視覚的理解と意思決定能力を示している。 本稿では,強化学習におけるアクター批判的自己学習パラダイムに触発された,SELUと呼ばれる新しいアクター批判的自己学習パラダイムを提案する。
    論文  参考訳(メタデータ)   (Fri, 04 Oct 2024 10:40:11 GMT)
  • 「We propose a self-learning paradigm for embodied MLLMs, SELU, inspired by the actorcritic paradigm in reinforcement learning, which enables MLLMs to self-adapt to unknown environments.」というSelf-XでEmbodiedというとても未来を感じる研究。
  • 環境に対するActorに対してMLLM Criticが評価するという、最近流行りのフレームワークだが、Actor MLLMとClitic MLLMをそれぞれfine tuningしていくことに特徴がある(同じMLLMを使うSELU Oneより優れているとのこと)

LLaVA-Critic: Learning to Evaluate Multimodal Models

  • LLaVA-Critic: Learning to Evaluate Multimodal Models [110.1]
    本稿では,LLaVA-Criticについて紹介する。LLaVA-Criticは,汎用評価器として設計された,最初のオープンソースの大規模マルチモーダルモデル(LMM)である。 LLaVA-Criticは、さまざまな評価基準とシナリオを組み込んだ高品質な批判的インストラクションフォローデータセットを使用してトレーニングされている。
    論文  参考訳(メタデータ)   (Thu, 03 Oct 2024 17:36:33 GMT)
  • マルチモーダルなタスクに対しての評価を行うモデルの提案。データ構築もMLLMを多用するアプローチになっていて興味深いが、ライセンス的に大丈夫なんだろうかという若干の不安。
  • プロジェクトサイトはLLaVA-OneVision: Easy Visual Task Transfer (llava-vl.github.io)

LLMs assist NLP Researchers: Critique Paper (Meta-)Reviewing 

  • LLMs assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.5]
    大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。 本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。 私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
    論文  参考訳(メタデータ)   (Mon, 24 Jun 2024 01:30:22 GMT)
  • LLMが研究者を支援できるかどうか、レビュワー・メタレビュワーの観点で試行した論文
  • 結論として「Our analysis reveals that while LLMs can generate reviews, they often produce Deficient and paper-unspecific segments, lacking the diversity and constructive feedbacks.Additionally, even state-of-the-art LLMs struggle to assess review deficiencies effectively.」

Gemma2, CriticGPT

Googleから公開モデルとしては規模の大きいLLM Gemma2がリリースされた。9Bと27Bの公開。Llama3など競合する公開モデルを超える性能とのこと。テクニカルレポート(gemma-2-report.pdf (storage.googleapis.com))には「The 9 billion and 27 billion parameter models are available today, with a 2 billion parameter model to be released shortly.」とある。「We also train the 2B and 9B models with knowledge distillation (Hinton et al , 2015) instead of next token prediction. The resulting models deliver the best performance for their size, and even offer competitive alternatives to models that are 2-3× bigger.」と蒸留を効果的に使っているもの面白い。5. Ablationsをみるに効果は大きそう

いつもの翻訳ベンチマークでは非常に高い性能を示した。期待大である。Gemma 2 9Bの機械翻訳性能 | ぷるーふおぶこんせぷと (staka.jp)

OpenAIからはGPT-4の間違いを見つけ修正提案するCriticGPTが出ている。今はコードの修正が対象。限界もあるようだがこのような研究は重要。Finding GPT-4’s mistakes with GPT-4 | OpenAI

Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing

  • Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.8]
    大規模言語モデルの自己改善のためのAlphaLLMを紹介する。 モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。 実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
    論文  参考訳(メタデータ)   (Thu, 18 Apr 2024 15:21:34 GMT)
  • Monte Carlo Tree Search + LLM、「we use the term option as a search node and propose option-level MCTS where each option represents a sequence of tokens, which can range from multiple tokens to several sentences.」というのが興味深く、性能向上にも寄与

AlignBenchとCRITIQUELLM

中国語のアライメント評価のためのベンチマークと評価モデルの提案、リポジトリはGitHub – THUDM/AlignBench: 多维度中文对齐评测基准 | Benchmarking Chinese Alignment of LLMsGitHub – thu-coai/CritiqueLLM

データセットの規模は1000以下とそこまで大規模ではないがこの手の基盤づくりは日本語でもやっていきたいところ。「Additionally, a systematic evaluation of 17 Chinese-supported LLMs was conducted to identify their levels of alignment.」とあるが、評価結果はGPT-3.5を超えているものはあるが僅差でGPT-4には及んでいない、という状況のよう。

  • AlignBench: Benchmarking Chinese Alignment of Large Language Models [100.3]
    中国語大言語モデルのアライメントを評価するための総合ベンチマークであるAlignBenchを紹介する。 筆者らのベンチマークでは,多次元LCM-as-JudgeとChain-of-Thoughtを用いて,説明と最終評価を評価として用いた。 また, GPT-4の評価能力の95%を回復する専用コンパニオン評価器であるCritiqueLLMを開発した。
    論文  参考訳(メタデータ)   (Thu, 30 Nov 2023 17:41:30 GMT)
  • CritiqueLLM: Scaling LLM-as-Critic for Effective and Explainable Evaluation of Large Language Model Generation [89.8]
    我々は、CrytiqueLLMと呼ばれる新しい批評生成モデルを提案する。 実験結果から,GPT-4に匹敵する評価性能が得られた。
    論文  参考訳(メタデータ)   (Thu, 30 Nov 2023 16:52:42 GMT)