コンテンツへスキップ
- A Survey of Long-Document Retrieval in the PLM and LLM Era [19.1]
この調査は、LDR(Long-Docment Search)の最初の包括的治療を提供する。 古典的語彙モデルと初期ニューラルモデルから近代事前学習モデル(PLM)および大規模言語モデル(LLM)への進化を体系化する。 我々は、ドメイン固有のアプリケーション、特別な評価リソースをレビューし、効率のトレードオフ、マルチモーダルアライメント、忠実さといった重要なオープン課題を概説する。
論文 参考訳(メタデータ) (Tue, 09 Sep 2025 13:57:53 GMT)
- 長い文書の取り扱いに関するサーベイ
- CAT: Causal Attention Tuning For Injecting Fine-grained Causal Knowledge into Large Language Models [42.1]
因果注意チューニング(Causal Attention Tuning, CAT)は、注意機構に微粒な因果知識を注入する新しいアプローチである。 トークンレベルの因果信号を自動的に生成するために,人間の先行情報を活用する自動パイプラインを提案する。 CatはSTGデータセットで5.76%、下流タスクで1.56%の平均的な改善を実現している。
論文 参考訳(メタデータ) (Tue, 09 Sep 2025 04:01:50 GMT)
- 「(1) causal prior knowledge extraction 」「(2) causal constraint attention training.」からなる因果関係の投入
- リポジトリはGitHub – Kairong-Han/CAT