Claude Opus 4.5, DeepSeekMath-V2, DR Tulu, Qwen3-VL, HunyuanVideo 1.5

先週はOpus 4.5の発表(Introducing Claude Opus 4.5 \ Anthropic)があり、Anthropic Clodeが特にコード生成においてさすがの性能を見せた。

公開モデル関連では数学に強いDeepSeekMath-V2(deepseek-ai/DeepSeek-Math-V2 · Hugging Face)、Deep Researchに強いDR Tulu(DR Tulu: An open, end-to-end training recipe for long-form deep research | Ai2)やQwen3-VL、HunyuanVideo 1.5のテクニカルレポートに注目という状況。

  • DR Tulu: Reinforcement Learning with Evolving Rubrics for Deep Research [152.2]
    ディープ・リサーチ・モデルは、多段階の研究を行い、長文でよく理解された回答を生成する。 ほとんどのオープンディープリサーチモデルは、検証可能な報酬を伴う強化学習を通じて、短い形式のQAタスクで訓練されている。 我々は、オープンエンドで長期のディープリサーチのために直接訓練された最初のオープンモデルであるDeep Research Tulu (DR Tulu-8B)を開発した。
    論文  参考訳(メタデータ)   (Wed, 26 Nov 2025 14:52:10 GMT)
  • 「In this paper, we introduce Deep Research Tulu (DR Tulu-8B), the first open model that is directly trained for open-ended, long-form deep research tasks. To address the challenge of verification in long-form tasks, DR Tulu is first finetuned on high-quality, naturally occurring user data, and then trained via a new method we call Reinforcement Learning with Evolving Rubrics (RLER), in which we construct and maintain rubrics that co-evolve with the policy model during training.」とDeepResearchに特化したモデルの提案。強化学習部分も興味深い構成。
  • リポジトリはGitHub – rlresearch/dr-tulu: Official repository for DR Tulu: Reinforcement Learning with Evolving Rubrics for Deep Research
  • Qwen3-VL Technical Report [153.4]
    Qwen3-VLは、これまでで最も有能な視覚言語モデルであり、幅広いマルチモーダルベンチマークで優れた性能を実現している。 最大256Kトークンのインターリーブコンテキストをサポートし、テキスト、画像、ビデオをシームレスに統合する。 Qwen3-VLは3つの中核柱を提供する: (i) 非常に強い純粋テキスト理解、いくつかのケースにおいて同等のテキストのみのバックボーンを超える、 (ii) テキスト入力とインターリーブされたマルチモーダル入力の両方に256Kのネイティブウィンドウを持つ堅牢な長期理解、 (iii) シングルイメージ、マルチイメージ、ビデオタスクをまたいだ高度なマルチモーダル推論。
    論文  参考訳(メタデータ)   (Wed, 26 Nov 2025 17:59:08 GMT)
  • 「The Qwen3-VL framework integrates a vision encoder and a language model decoder to process multimodal inputs, including text, images, and video. The vision encoder is specifically designed to handle dynamic, native-resolution visual inputs, mapping them to visual tokens of variable length.」という構成、商用モデルと比較可能な性能、一部は上回る。
  • リポジトリはGitHub – QwenLM/Qwen3-VL: Qwen3-VL is the multimodal large language model series developed by Qwen team, Alibaba Cloud.

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です