コンテンツへスキップ
- Training Language Models to Explain Their Own Computations [73.9]
本研究では,LMの自己内部への特権的アクセスをどの程度活用できるかを考察し,その振る舞いを説明するための新しい手法を提案する。 既存の解釈可能性技術を用いて,(1)LM特徴によって符号化された情報,(2)LMの内部アクティベーションの因果構造,(3)特定の入力トークンがLM出力に与える影響の自然言語記述を生成する。
論文 参考訳(メタデータ) (Wed, 12 Nov 2025 02:05:44 GMT)
- 「Taken together, these results suggest that even when language models cannot faithfully self-explain as a result of ordinary training, they can learn to do so through an objective that enforces consistency between their external explanations and their internal procedures. This reframes interpretation as not only an external analysis problem, but as a capability that can be trained into LMs themeselves; by leveraging privileged access to internal computations, “introspective interpretability” techniques offer an avenue towards scalable understanding of model behavior.」と非常に興味深い研究
- IterResearch: Rethinking Long-Horizon Agents via Markovian State Reconstruction [107.5]
IterResearchは、マルコフ決定過程として長期研究を再構築する、新しい反復的深層研究パラダイムである。 6つのベンチマークで平均+14.5ppの既存のオープンソースエージェントよりも大幅に改善されている。 これは効果的なプロンプト戦略として機能し、ロングホライゾンタスクにおけるReActよりも19.2ppのフロンティアモデルを改善する。
論文 参考訳(メタデータ) (Mon, 10 Nov 2025 17:30:08 GMT)
- 長い処理を必要とする問題に対して通常行われる「The mono-contextual approach linearly accumulates all information into a single, ever- expanding context, leading to context suffocation and noise contamination.」からの改善、「IterResearch models deep research as an extended MDP with workspace reconstruction. Each round begins with a reconstructed workspace st containing the question, an evolving report Mt, and immediate context. The agent generates structured decisions dt = (Think, Report, Action) and interacts with environment E. The transition function T reconstructs the workspace, maintaining the Markov property while preventing context bloat and enabling sustained reasoning and information-seeking.」という手法を提案。AIといえども(?)情報整理は重要。
- 多くのベンチマークでスコアを改善。
- A Survey on Deep Text Hashing: Efficient Semantic Text Retrieval with Binary Representation [69.5]
テキストハッシュはオリジナルのテキストをコンパクトなバイナリハッシュコードに投影する。 ディープテキストハッシュは、従来のデータに依存しないハッシュ技術よりも大きなアドバンテージを示している。 本調査では, コアコンポーネントに基づいて分類することで, 現在の深層テキストハッシュ法について検討する。
論文 参考訳(メタデータ) (Fri, 31 Oct 2025 06:51:37 GMT)
- 「In this survey, we offer a comprehensive review of the literature on deep text hashing. We begin by systematically categorizing various approaches based on two key aspects emphasized by current deep text hashing models: semantic extraction and hash code quality. Subsequently, we present performance evaluation results on several widely used benchmark datasets and summarize the prevailing directions of application.」というサーベイ。
- リポジトリはGitHub – hly1998/DeepTextHashing: The Python implementation of some deep text hashing (also called deep semantic hashing) Models