WikiDiverse: マルチモーダルなエンティティ・リンキングデータセット

  • WikiDiverse: A Multimodal Entity Linking Dataset with Diversified Contextual Topics and Entity Types [25.6]
    MEL(Multimodal Entity Linking)は、知識ベース(例えばWikipedia)からの参照エンティティへの参照をマルチモーダルコンテキストにリンクすることを目的としている。 WikiDiverseは、Wikinewsのコンテキストトピックやエンティティタイプを多用した、高品質な人間アノテーション付きMELデータセットである。 WikiDiverseに基づいて、モダリティ内およびモダリティ間注目を伴うよく設計されたMELモデルのシーケンスを実装した。
    論文  参考訳(メタデータ)   (Wed, 13 Apr 2022 12:52:40 GMT)
    • 画像を併用したエンティティリンキングのデータセット。人の手が入っておりクオリティが高いとのこと。ベースラインモデルでもマルチモーダルなデータ活用は有効そう。データ数は8Kキャプション、 ライセンスはCC BY-SA 4.0。 
    • リポジトリはGitHub – wangxw5/wikiDiverse

NumGLUE: 数学的推論のデータセット

  • NumGLUE: A Suite of Fundamental yet Challenging Mathematical Reasoning Tasks [37.7]
    8つのタスクでAIシステムの性能を評価するベンチマークであるNumGLUEを提案する。 このベンチマークは、最先端の大規模言語モデルを含むニューラルモデルで解決されるには程遠い。 我々はNumGLUEが言語内で堅牢で一般的な算術推論を行うシステムを促進することを願っている。
    論文  参考訳(メタデータ)   (Tue, 12 Apr 2022 09:36:10 GMT)
    • 以下8タスクからなる数学的推論タスクのデータセット。ベースラインも用意されているがかなり困難なタスクに見える。
      • TASK 1 Commonsense + Arithmetic
      • TASK 2 Domain specific + Arithmetic
      • TASK 3 Commonsense + Quantitative
      • TASK 4 Fill-in-the-blanks
      • TASK 5 RC + Explicit Numerical Reasoning
      • TASK 6 RC + Implicit Numerical Reasoning
      • TASK 7 Quantitative NLI
      • TASK 8 Arithmetic word problems
  • プロジェクトサイトはNumGLUE Dataset — Allen Institute for AI (allenai.org)

EntSUM: Entity-Centricな要約データセット

  • EntSUM: A Data Set for Entity-Centric Summarization [27.8]
    制御可能な要約は、ユーザが指定した側面や好みを考慮に入れた要約を提供することを目的としている。 本稿では、制御可能な要約のための人間アノテーション付きデータセットEntSUMを紹介し、制御の側面として名前付きエンティティに焦点を当てる。
    論文  参考訳(メタデータ)   (Tue, 5 Apr 2022 13:45:54 GMT)

FairytaleQA : 物語理解のためのQAデータセット

  • Fantastic Questions and Where to Find Them: FairytaleQA — An Authentic Dataset for Narrative Comprehension [136.8]
    幼稚園児の物語理解に焦点を当てたデータセットであるFairytaleQAを8年生に紹介する。 FairytaleQAは10,580の明示的で暗黙的な質問で構成されており、278の子供フレンドリーな物語から導かれる。
    論文  参考訳(メタデータ)   (Sat, 26 Mar 2022 00:20:05 GMT)
    • 物語ドメインのQAデータセット。規模はそれなりという感じだが、セクション限定を行わない場合、長めのテキストを扱う必要がありそう。

lfqa_discourse

BigDetection: Object detection用大規模データセット

IAM: 議論マイニングのための包括的な大規模なデータセット

  • IAM: A Comprehensive and Large-Scale Dataset for Integrated Argument Mining Tasks [59.5]
    本稿では,一連の議論マイニングタスクに適用可能なIAMという,包括的で大規模なデータセットを提案する。 データセットの70k近い文は、引数特性に基づいて完全に注釈付けされている。 議論準備プロセスに関連する2つの新しい統合された議論マイニングタスクを提案する。(1) 姿勢分類付きクレーム抽出(CESC)と(2) クレーム・エビデンス・ペア抽出(CEPE)である。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 24 Mar 2022 03:27:52 GMT)
    • 議論マイニングのため、 Claim Extraction with Stance Classification (CESC) と Claim-Evidence Pair Extraction (CEPE)タスクを設定、データセットを作成、ベースラインを提供
      • IAM = Integrated Argument Mining ?

WuDaoMM: 大規模な画像・テキストのマルチモーダルデータセット

  • WuDaoMM: A large-scale Multi-Modal Dataset for Pre-training models [2.6]
    我々はWuDaoMMという大規模マルチモーダルコーパスを導入し、6億5000万以上の画像テキストペアを網羅した。 画像とキャプションの相関が弱い複数のWebページから、約6億のデータを収集する。 具体的には、画像とキャプションの相関が弱い複数のWebページから約6億のデータを収集し、他の5000万の強い関連画像テキストペアを高品質なグラフィックWebサイトから収集する。 また、WuDaoMMのベースバージョンを500万の強相関画像テキストペアでリリースし、一般的なクロスモーダルモデル事前トレーニングをサポートするのに十分です。
    論文  参考訳(メタデータ)  参考訳(全文)  (Tue, 22 Mar 2022 06:12:20 GMT)
    • テキスト・画像の大規模データセット。研究目的にのみ利用可能。
    • プロジェクトサイトはresource (wudaoai.cn)

XTREME-S: クロスリンガルな音声表現ベンチマーク

  • XTREME-S: Evaluating Cross-lingual Speech Representations [75.4]
    XTREME-Sは,言語間の共通言語表現を評価するための新しいベンチマークである。 本稿では,新しいベンチマークについて述べるとともに,音声のみのベースラインと音声テキストのベースラインを確立する。
    論文  参考訳(メタデータ)  参考訳(全文)  (Mon, 21 Mar 2022 06:50:21 GMT)
    • speech recognition、speech classification、speech translation、speech retrievalのタスクに対する多言語データセット
    • Huggingfaceからダウンロード可能とのことだが、現時点では404 https://huggingface.co/datasets/google/xtreme_s

SciNLI:科学に関連するテキストのNLI