コンテンツへスキップ
- WikiDiverse: A Multimodal Entity Linking Dataset with Diversified Contextual Topics and Entity Types [25.6]
MEL(Multimodal Entity Linking)は、知識ベース(例えばWikipedia)からの参照エンティティへの参照をマルチモーダルコンテキストにリンクすることを目的としている。 WikiDiverseは、Wikinewsのコンテキストトピックやエンティティタイプを多用した、高品質な人間アノテーション付きMELデータセットである。 WikiDiverseに基づいて、モダリティ内およびモダリティ間注目を伴うよく設計されたMELモデルのシーケンスを実装した。
論文 参考訳(メタデータ) (Wed, 13 Apr 2022 12:52:40 GMT)- 画像を併用したエンティティリンキングのデータセット。人の手が入っておりクオリティが高いとのこと。ベースラインモデルでもマルチモーダルなデータ活用は有効そう。データ数は8Kキャプション、 ライセンスはCC BY-SA 4.0。
- リポジトリはGitHub – wangxw5/wikiDiverse
- NumGLUE: A Suite of Fundamental yet Challenging Mathematical Reasoning Tasks [37.7]
8つのタスクでAIシステムの性能を評価するベンチマークであるNumGLUEを提案する。 このベンチマークは、最先端の大規模言語モデルを含むニューラルモデルで解決されるには程遠い。 我々はNumGLUEが言語内で堅牢で一般的な算術推論を行うシステムを促進することを願っている。
論文 参考訳(メタデータ) (Tue, 12 Apr 2022 09:36:10 GMT)- 以下8タスクからなる数学的推論タスクのデータセット。ベースラインも用意されているがかなり困難なタスクに見える。
- TASK 1 Commonsense + Arithmetic
- TASK 2 Domain specific + Arithmetic
- TASK 3 Commonsense + Quantitative
- TASK 4 Fill-in-the-blanks
- TASK 5 RC + Explicit Numerical Reasoning
- TASK 6 RC + Implicit Numerical Reasoning
- TASK 7 Quantitative NLI
- TASK 8 Arithmetic word problems
- プロジェクトサイトはNumGLUE Dataset — Allen Institute for AI (allenai.org)
- EntSUM: A Data Set for Entity-Centric Summarization [27.8]
制御可能な要約は、ユーザが指定した側面や好みを考慮に入れた要約を提供することを目的としている。 本稿では、制御可能な要約のための人間アノテーション付きデータセットEntSUMを紹介し、制御の側面として名前付きエンティティに焦点を当てる。
論文 参考訳(メタデータ) (Tue, 5 Apr 2022 13:45:54 GMT)
- Fantastic Questions and Where to Find Them: FairytaleQA — An Authentic Dataset for Narrative Comprehension [136.8]
幼稚園児の物語理解に焦点を当てたデータセットであるFairytaleQAを8年生に紹介する。 FairytaleQAは10,580の明示的で暗黙的な質問で構成されており、278の子供フレンドリーな物語から導かれる。
論文 参考訳(メタデータ) (Sat, 26 Mar 2022 00:20:05 GMT)- 物語ドメインのQAデータセット。規模はそれなりという感じだが、セクション限定を行わない場合、長めのテキストを扱う必要がありそう。
- How Do We Answer Complex Questions: Discourse Structure of Long-form Answers [52.0]
3つのデータセットから収集した長文回答の機能構造について検討した。 私たちの主な目標は、人間が複雑な答えを作るためにどのように情報を整理するかを理解することです。 我々の研究は、長期QAシステムの談話レベルのモデリングと評価に関する将来の研究に刺激を与えることができる。
論文 参考訳(メタデータ) 参考訳(全文) (Mon, 21 Mar 2022 15:14:10 GMT)
- BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training [44.3]
我々はBigDetectionと呼ばれる新しい大規模ベンチマークを構築した。 私たちのデータセットには600のオブジェクトカテゴリがあり、3.4M以上のトレーニングイメージと36Mのバウンディングボックスが含まれています。
論文 参考訳(メタデータ) (Thu, 24 Mar 2022 17:57:29 GMT)
- IAM: A Comprehensive and Large-Scale Dataset for Integrated Argument Mining Tasks [59.5]
本稿では,一連の議論マイニングタスクに適用可能なIAMという,包括的で大規模なデータセットを提案する。 データセットの70k近い文は、引数特性に基づいて完全に注釈付けされている。 議論準備プロセスに関連する2つの新しい統合された議論マイニングタスクを提案する。(1) 姿勢分類付きクレーム抽出(CESC)と(2) クレーム・エビデンス・ペア抽出(CEPE)である。
論文 参考訳(メタデータ) 参考訳(全文) (Thu, 24 Mar 2022 03:27:52 GMT)- 議論マイニングのため、 Claim Extraction with Stance Classification (CESC) と Claim-Evidence Pair Extraction (CEPE)タスクを設定、データセットを作成、ベースラインを提供
- IAM = Integrated Argument Mining ?
- WuDaoMM: A large-scale Multi-Modal Dataset for Pre-training models [2.6]
我々はWuDaoMMという大規模マルチモーダルコーパスを導入し、6億5000万以上の画像テキストペアを網羅した。 画像とキャプションの相関が弱い複数のWebページから、約6億のデータを収集する。 具体的には、画像とキャプションの相関が弱い複数のWebページから約6億のデータを収集し、他の5000万の強い関連画像テキストペアを高品質なグラフィックWebサイトから収集する。 また、WuDaoMMのベースバージョンを500万の強相関画像テキストペアでリリースし、一般的なクロスモーダルモデル事前トレーニングをサポートするのに十分です。
論文 参考訳(メタデータ) 参考訳(全文) (Tue, 22 Mar 2022 06:12:20 GMT)
- XTREME-S: Evaluating Cross-lingual Speech Representations [75.4]
XTREME-Sは,言語間の共通言語表現を評価するための新しいベンチマークである。 本稿では,新しいベンチマークについて述べるとともに,音声のみのベースラインと音声テキストのベースラインを確立する。
論文 参考訳(メタデータ) 参考訳(全文) (Mon, 21 Mar 2022 06:50:21 GMT)
- SciNLI: A Corpus for Natural Language Inference on Scientific Text [47.3]
我々は,NLIのための大規模データセットであるSciNLIを紹介した。 我々の実験によると、SciNLIは既存のNLIデータセットよりも分類が難しい。
論文 参考訳(メタデータ) (Sun, 13 Mar 2022 18:23:37 GMT)