コンテンツへスキップ
- A Comprehensive Review on Financial Explainable AI [29.2]
金融の文脈における深層学習モデルの説明可能性向上を目的とした手法の比較調査を行う。 説明可能なAI手法のコレクションは,その特性に応じて分類する。 我々は、説明可能なAI手法を採用する際の懸念と課題を、適切かつ重要と考えられる今後の方向性とともにレビューする。
論文 参考訳(メタデータ) (Thu, 21 Sep 2023 10:30:49 GMT)
- 金融におけるXAIのサーベイ、状況を概観するのに良い。金融分野へのXAIは必要性もありかなり導入されている印象がある。
- Multimodal Foundation Models: From Specialists to General-Purpose Assistants [187.7]
専門モデルから汎用アシスタントへの移行に焦点をあて,視覚と視覚言語能力を示すマルチモーダル基礎モデルの分類と進化に関する包括的調査を行う。 対象読者は、コンピュータビジョンの研究者、大学院生、およびビジョン言語によるマルチモーダルコミュニティの専門家である。
論文 参考訳(メタデータ) (Mon, 18 Sep 2023 17:56:28 GMT)
- 特化型モデル → 汎用アシスタントという最近の潮流に関するサーベイ。100ページ近くの分量であり教科書に近い
- 研究の進展が非常に速い分野でもありとても重要な論文
- Siren’s Song in the AI Ocean: A Survey on Hallucination in Large Language Models [116.0]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。 LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。本稿では, 幻覚の検出, 説明, 緩和に関する最近の取り組みを, LLMがもたらすユニークな課題に焦点をあてて調査する。
論文 参考訳(メタデータ) (Sun, 3 Sep 2023 16:56:48 GMT)
- LLMにおけるHallucinationに関するサーベイ
- HallucinationをInput-conflicting hallucination、Context-conflicting hallucination、Fact-conflicting hallucinationに分け、対応もPre train、SFT、RLHF、Inferenceとステージ別に分けて整理されており大変わかりやすい。
- Cognitive Architectures for Language Agents [47.0]
本研究では,言語エージェントのための認知的アーキテクチャ (CoALA) を提案し,推論,基礎化,学習,意思決定の多様な手法を体系化する。
論文 参考訳(メタデータ) (Tue, 5 Sep 2023 17:56:20 GMT)
- 言語エージェントの観点からLLMに関する様々なテクニック・研究を整理しフレームワーク化した論文
- 「Zero-shot, Few-shot, Zero-shot Chain-of-Thought, Retrieval Augmented Generation, Socratic Models, Self-Critique」のようなテクニックの整理や「SayCan, ReAct, Voyager, Generative Agents, Tree of Thoughts」との比較などLLM周りの様々な取り組みを整理するうえでも参考になる。
- リポジトリはGitHub – ysymyth/awesome-language-agents: List of language agents based on paper “Cognitive Architectures for Language Agents”
- Explainability for Large Language Models: A Survey [59.7]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。 本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (Sat, 2 Sep 2023 22:14:26 GMT)
- LLMの説明可能性に関するサーベイ
- Traditional Fine-tuning Paradigm、Prompting Paradigmという分け方がLLM的
- Computation-efficient Deep Learning for Computer Vision: A Survey [121.8]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。 ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。 新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (Sun, 27 Aug 2023 03:55:28 GMT)
- 効率的な画像処理モデルに関するサーベイ
- 「Efficient Backbone Models / Dynamic Deep Networks」→「Task-specialized Efficient Models」→「Model Compression Techniques」→「Efficient Deployment on Hardware」と様々なレイヤで調査がされている。
- A Survey on Large Language Model based Autonomous Agents [107.8]
大規模言語モデル(LLM)は、人間レベルの知性を達成する上で、顕著な可能性を示している。 本稿では,自律エージェントの分野を包括的観点から体系的に検討する。 社会科学,自然科学,工学の分野におけるLLMベースのAIエージェントの様々な応用について概説する。
論文 参考訳(メタデータ) (Tue, 22 Aug 2023 13:30:37 GMT)
- LLMを用いたAIエージェントに関するサーベイ。フレームワークとしてprofiling module, memory module, planning module, action moduleでの構成が想定されている。LLM活用が流行ってからエージェントへの応用、さらにそれらのサーベイが出るというスピード感がとても早い。。。
- 関連するリポジトリが用意されている。https://github.com/Paitesanshi/LLM-Agent-Survey
- Few-shot Class-incremental Learning: A Survey [16.7]
FSCIL(Few-shot Class-Incremental Learning)は、機械学習においてユニークな課題である。 本稿は、FSCILの総合的かつ体系的なレビューを提供することを目的としている。
論文 参考訳(メタデータ) (Sun, 13 Aug 2023 13:01:21 GMT)
- 学習した知識を忘れずに新たなクラスを扱う(各クラスは限られたデータしかない)手法(FSCIL(Few-shot Class-Incremental Learning))のサーベイ
- Machine Unlearning: Solutions and Challenges [23.1]
機械学習モデルは、機密性、不正、悪意のあるデータを不注意に記憶し、プライバシ侵害、セキュリティ侵害、パフォーマンス劣化のリスクを生じさせる可能性がある。 これらの問題に対処するために、機械学習は訓練されたモデルに対する特定の訓練データポイントの影響を選択的に除去する重要なテクニックとして登場した。
論文 参考訳(メタデータ) (Mon, 14 Aug 2023 10:45:51 GMT)
- Machine Unlearningのサーベイ、EXACT UNLEARNING、APPROXIMATE UNLEARNINGに分けてレビューがなされている。SISA(Sharding, Isolation, Slicing, and Aggregation )が有名な気がしつつ、いろいろなアプローチがあって興味深い。