Chain of Code

  • Chain of Code: Reasoning with a Language Model-Augmented Code Emulator [119.0]
    言語モデル(LM)はコード記述を活用して思考の連鎖推論を改善する。 我々は、LMコード駆動推論を改善するシンプルな、そして驚くほど効果的な拡張であるChain of Code (CoC)を提案する。
    論文  参考訳(メタデータ)   (Thu, 7 Dec 2023 17:51:43 GMT)
  • LLMをコードを通して考えさせることによって性能が向上する(Chain of Code achieves 84%, a gain of 12% over Chain of Thought)とのこと。PALのようなプログラミング言語を通すアプローチと異なり、実行できる場合はインタプリタを実行できない場合は疑似コードを LMulator (a portmanteau of LM and emulator)を通して解釈する点が特徴。
  • リポジトリはChain of Code (google.com)

Thread of Thought

  • Thread of Thought Unraveling Chaotic Contexts [133.2]
    思考のスレッド(ThoT)戦略は、人間の認知プロセスからインスピレーションを得ている。 実験では、他のプロンプト技術と比較して、ThoTは推論性能を著しく改善する。
    論文  参考訳(メタデータ)   (Wed, 15 Nov 2023 06:54:44 GMT)
  • プロンプトテクニック“Thread of Thought” (ThoT) strategyの提案。「chaotic context X and query Q」に対して「“[X] Q: [Q] Walk me through this context in manageable parts step by step, summarizing and analyzing as we go. A:”.」としてから回答を得るアプローチ。CoTより優れているとのこと。

CoVe: Chain-of-Verification

  • Chain-of-Verification Reduces Hallucination in Large Language Models [81.0]
    言語モデルが与える反応を考慮し、誤りを訂正する能力について検討する。 モデルが最初に初期応答をドラフトするChain-of-Verification (CoVe) 法を開発した。 ウィキデータからクローズドブックMultiSpanQAまで,さまざまなタスクにおける幻覚の減少を示す。
    論文  参考訳(メタデータ)   (Wed, 20 Sep 2023 17:50:55 GMT)
  • 初期回答を作成→検証計画(検証用の質問)を作成→検証(回答・合意確認)→最終回答とすることでHallucinationを防ぐ取り組み
  • 近しい報告は多いので効果的であろうとは思うが、Are Large Language Model-based Evaluators the Solution to Scaling Up Multilingual Evaluation? – arXiv最新論文の紹介 (devneko.jp)の件もあり多言語で動作するかも興味がある。