コンテンツへスキップ
- Chain of Code: Reasoning with a Language Model-Augmented Code Emulator [119.0]
言語モデル(LM)はコード記述を活用して思考の連鎖推論を改善する。 我々は、LMコード駆動推論を改善するシンプルな、そして驚くほど効果的な拡張であるChain of Code (CoC)を提案する。
論文 参考訳(メタデータ) (Thu, 7 Dec 2023 17:51:43 GMT)
- LLMをコードを通して考えさせることによって性能が向上する(Chain of Code achieves 84%, a gain of 12% over Chain of Thought)とのこと。PALのようなプログラミング言語を通すアプローチと異なり、実行できる場合はインタプリタを実行できない場合は疑似コードを LMulator (a portmanteau of LM and emulator)を通して解釈する点が特徴。
- リポジトリはChain of Code (google.com)
- Program-Aided Reasoners (better) Know What They Know [59.3]
プログラム支援言語モデル(PAL)の校正と,5つのデータセットにまたがるテキストベースのChain-of-Thought(COT)技術の比較を行った。 以上の結果から, PALは75%の症例で校正の改善につながることが示唆された。
論文 参考訳(メタデータ) (Thu, 16 Nov 2023 04:17:49 GMT)
- PALとCOTの比較、「Overall, we demonstrate that, in the majority of cases, program-aided reasoners better know what they know than text-based counterparts.」とのこと。理由が知りたいところ。
- リポジトリはhttps://github.com/mathuryash5/code-calibratesとのこと
- Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation [42.5]
効果的な思考設計は、パフォーマンス、効率、柔軟性の3つの重要な観点を考慮すべきである。 我々は,既存の思考パラダイムのペンローズ三角形の法則に反する,思考のすべて (XoT) と呼ばれる新しい思考促進手法を導入する。
論文 参考訳(メタデータ) (Tue, 7 Nov 2023 12:30:36 GMT)
- of thoughtシリーズワイルカードの2番目(?)
- 「XOT leverages pretrained reinforcement learning and Monte Carlo Tree Search (MCTS) to incorporate external domain knowledge into thoughts, thereby enhancing LLMs’ capabilities and enabling them to generalize to unseen problems efficiently.」ということでX-of-Thoughts – arXiv最新論文の紹介 (devneko.jp)とも異なるアプローチ
- Towards Better Chain-of-Thought Prompting Strategies: A Survey [60.8]
CoT(Chain-of-Thought)は,大規模言語モデル(LLM)の促進戦略として使用すると,その印象的な強度を示す。 近年,CoTの促進効果が注目されている。 この調査は、関連する研究全般の参考になるかもしれない。
論文 参考訳(メタデータ) (Sun, 8 Oct 2023 01:16:55 GMT)
- Chain of Thoughtのサーベイ、新たな分野でありサーベイできるほどの研究があるというのも若干驚き。Extension Strategiesが非常に参考になった。
- Symbolic Chain-of-Thought Distillation: Small Models Can Also “Think” Step-by-Step [122.6]
思考の連鎖は、素数大言語モデルに彼らの予測の合理化を口頭で示すよう促す。 オーダーオブマグニチュードの小さなモデルでも、チェーンオブ思想のプロンプトの恩恵を受けられることを示す。 そこで我々は,より大規模な教師モデルから抽出した合理化に基づいて,より小さな学生モデルを訓練する方法であるSymbolic Chain-of-Thought Distillation (SCoTD)を紹介した。
論文 参考訳(メタデータ) (Sat, 24 Jun 2023 20:15:07 GMT)
- 小規模なモデルでもChain of Thougthが有効であること、また、それを生かすために有効な蒸留方法Symbolic Chain-of-thought Distillation (SCoTD)の提案。タスクにもよるがベンチマーク結果からはかなり有効な手法に見える。
- リポジトリはhttps://github.com/allenai/cot_distillationとのことだが、現時点では404
- Large Language Models as Tool Makers [53.8]
我々は,LLMが独自の再利用可能なツールを作成する,LLMs As Tool Makers (LATM) と呼ばれるクローズドループフレームワークを提案する。 1) ツール作成: LLMは与えられたタスクのためのツールを作成するツールメーカーとして機能し、そこでツールはPythonユーティリティ関数として実装されます。 我々は,Big-Benchタスクを含む様々な複雑な推論タスクに対するアプローチの有効性を検証する。
論文 参考訳(メタデータ) (Fri, 26 May 2023 17:50:11 GMT)
- GPT-4でツールを作りGPT-3.5-turboが利用するアプローチでGPT-3.5-turbo単体のCoTを大きく超えた性能を発揮し、かつコストも抑えられる、GPT-4を常に使用する場合に比べてコストパフォーマンスが高いというのが興味深い。
- リポジトリはGitHub – ctlllll/LLM-ToolMaker
- MultiTool-CoT: GPT-3 Can Use Multiple External Tools with Chain of Thought Prompting [23.6]
推論過程において,計算機や知識検索などの外部ツールを組み込んだMultiTool-CoTを提案する。 NumGLUEのタスク2データセットにMultiTool-CoTを適用し,数値推論とドメイン固有知識の両方を必要とする。
論文 参考訳(メタデータ) (Fri, 26 May 2023 13:00:58 GMT)
- Toolを組み込んだCoT、NumGLUEで効果を確認とのこと。