What do LLMs Know about Financial Markets? A Case Study on Reddit Market Sentiment Analysis [15.2] ソーシャルメディアコンテンツに対する市場の感情分析には、金融市場とソーシャルメディアのジャーゴンの両方の知識が必要である。 我々のパイプラインは、大きな言語モデル(LLM)を用いたReddit投稿の弱い財務感情ラベルを生成する。 少数のプロンプトだけで、最終モデルは既存の教師付きモデルと同等に実行される。 論文参考訳(メタデータ) (Wed, 21 Dec 2022 19:11:19 GMT)
Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them [108.5] 我々は,BIG-Bench Hard (BBH) と呼ばれる,BIG-Benchタスクに挑戦する23のスイートに焦点を当てる。 BBHタスクへのチェーン・オブ・ソウト(CoT)の適用により、PaLMは23タスクのうち10タスクにおいて平均的な人間レータ性能を上回り、Codexは23タスクのうち17タスクにおいて平均的な人間レータ性能を上回ります。 論文参考訳(メタデータ) (Mon, 17 Oct 2022 17:08:26 GMT)
BIG-Benchで人のスコアを上回らなかった23タスクに焦点を当て、Chain of Thoughtの適用で10 or 17タスクで性能の改善が見られたとのこと。
Automatic Chain of Thought Prompting in Large Language Models [20.5] 大規模言語モデル(LLM)は中間的推論ステップを生成することで複雑な推論を行うことができる。 「ステップ・バイ・ステップ」は、デモのための推論チェーンを1つずつ生成します。 自動CoTプロンプト法を提案する。 論文参考訳(メタデータ) (Fri, 7 Oct 2022 12:28:21 GMT)