Are Large Language Model-based Evaluators the Solution to Scaling Up Multilingual Evaluation?
Are Large Language Model-based Evaluators the Solution to Scaling Up Multilingual Evaluation? [20.5] 大規模言語モデル(LLM)は、自然言語処理(NLP)タスクにおいて素晴らしいパフォーマンスを示している。 現在の評価技術では、適切なベンチマーク、メトリクス、コスト、人間のアノテーションへのアクセスが欠如している。 本稿では,LLMに基づく評価器が多言語評価のスケールアップに有効かどうかを検討する。 論文参考訳(メタデータ) (Thu, 14 Sep 2023 06:41:58 GMT)
LLMがNLPの評価器として多言語設定でうまくいくか評価した論文。「We see that the PA between the annotators and GPT is lowest compared to the PA between the human annotators for Japanese and Czech」(PA: Percentage Agreement )「Our work indicates that LLMbased evaluators need to be used cautiously in the multilingual setting, particularly on languages on which LLMs are known to perform poorly.」とのこと。