コンテンツへスキップ
- Chain-of-Thought Reasoning Without Prompting [48.4]
CoT推論パスは、テキストデコーディングプロセスを変更するだけで、事前訓練されたLLMから引き出すことができる。 我々は、デコードパスにおけるCoTの存在は、モデルのデコードされた回答に対する高い信頼と相関していることを観察する。
論文 参考訳(メタデータ) (Thu, 15 Feb 2024 18:55:41 GMT)
- 「 there exists a task-agnostic way to elicit CoT reasoning from pre-trained LLMs by simply altering the decoding procedure.」という興味深い報告。デコーディング時の工夫は色々と改善の余地がありそうに思う。
- デコーディングプロセスでの工夫は計算コストが高くなるなどどっちでやるべきなのかという話はある
- Get an A in Math: Progressive Rectification Prompting [42.1]
CoT(Chain-of-Thought)プロンプト法により,大規模言語モデル(LLM)が推論経路を生成し,算術語問題(MWP)を解くことが可能になった。 77.3から90.5までの8MWPデータセットの平均精度を向上させるために,PRP (Progressive Rectification Prompting) という新しい手法を提案する。
論文 参考訳(メタデータ) (Mon, 11 Dec 2023 22:25:57 GMT)
- 検証修正を繰り返すタイプのプロンプティング手法 Progressive Rectification Prompting (PRP)によってCoTからの性能向上を報告。
- self-consistency, progressive-hint, progressive rectificationと工夫がされて行っていて面白いが、ここまで性能上がるものなんだろうか。(&日本語でも効果があるんだろうか)
- Exchange-of-Thought: Enhancing Large Language Model Capabilities through Cross-Model Communication [76.0]
大規模言語モデル(LLM)は、最近、Chain-of-Thoughtテクニックによる複雑な推論タスクにおいて大きな進歩を遂げました。 本稿では,問題解決時のクロスモデル通信を可能にする新しいフレームワークであるExchange-of-Thought (EoT)を提案する。
論文 参考訳(メタデータ) (Mon, 4 Dec 2023 11:53:56 GMT)
- モデル間通信をしながら回答を導くフレームワークの提案。ChatEval – arXiv最新論文の紹介 (devneko.jp)に近い動作のように思える。
- 性能は通常のCoTよりも良いとのこと。コスト分析があるのも面白い。
- Chain of Code: Reasoning with a Language Model-Augmented Code Emulator [119.0]
言語モデル(LM)はコード記述を活用して思考の連鎖推論を改善する。 我々は、LMコード駆動推論を改善するシンプルな、そして驚くほど効果的な拡張であるChain of Code (CoC)を提案する。
論文 参考訳(メタデータ) (Thu, 7 Dec 2023 17:51:43 GMT)
- LLMをコードを通して考えさせることによって性能が向上する(Chain of Code achieves 84%, a gain of 12% over Chain of Thought)とのこと。PALのようなプログラミング言語を通すアプローチと異なり、実行できる場合はインタプリタを実行できない場合は疑似コードを LMulator (a portmanteau of LM and emulator)を通して解釈する点が特徴。
- リポジトリはChain of Code (google.com)
- Program-Aided Reasoners (better) Know What They Know [59.3]
プログラム支援言語モデル(PAL)の校正と,5つのデータセットにまたがるテキストベースのChain-of-Thought(COT)技術の比較を行った。 以上の結果から, PALは75%の症例で校正の改善につながることが示唆された。
論文 参考訳(メタデータ) (Thu, 16 Nov 2023 04:17:49 GMT)
- PALとCOTの比較、「Overall, we demonstrate that, in the majority of cases, program-aided reasoners better know what they know than text-based counterparts.」とのこと。理由が知りたいところ。
- リポジトリはhttps://github.com/mathuryash5/code-calibratesとのこと
- Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation [42.5]
効果的な思考設計は、パフォーマンス、効率、柔軟性の3つの重要な観点を考慮すべきである。 我々は,既存の思考パラダイムのペンローズ三角形の法則に反する,思考のすべて (XoT) と呼ばれる新しい思考促進手法を導入する。
論文 参考訳(メタデータ) (Tue, 7 Nov 2023 12:30:36 GMT)
- of thoughtシリーズワイルカードの2番目(?)
- 「XOT leverages pretrained reinforcement learning and Monte Carlo Tree Search (MCTS) to incorporate external domain knowledge into thoughts, thereby enhancing LLMs’ capabilities and enabling them to generalize to unseen problems efficiently.」ということでX-of-Thoughts – arXiv最新論文の紹介 (devneko.jp)とも異なるアプローチ
- Towards Better Chain-of-Thought Prompting Strategies: A Survey [60.8]
CoT(Chain-of-Thought)は,大規模言語モデル(LLM)の促進戦略として使用すると,その印象的な強度を示す。 近年,CoTの促進効果が注目されている。 この調査は、関連する研究全般の参考になるかもしれない。
論文 参考訳(メタデータ) (Sun, 8 Oct 2023 01:16:55 GMT)
- Chain of Thoughtのサーベイ、新たな分野でありサーベイできるほどの研究があるというのも若干驚き。Extension Strategiesが非常に参考になった。