Self-Contrast

  • Self-Contrast: Better Reflection Through Inconsistent Solving Perspectives [48.2]
    研究によると、外部からのフィードバックがなければ、Large Language Modelの本質的なリフレクションは不安定である。 我々の調査によると、重要なボトルネックは自己評価されたフィードバックの品質である。 要求に合わせて様々な解決の観点を適応的に探求し、相違点を対比し、これらの相違点を再検討し、相違点を排除するために使用できるチェックリストにまとめます。
    論文  参考訳(メタデータ)   (Thu, 4 Jan 2024 00:32:33 GMT)
  • Self-verification系の手法だがチェックリストを用いる点が特徴的。よく言われている「The aforementioned experiments indicate that feedback generated by the self-evaluate process is either highly random or excessively confident.」に対応するため「We abstract insightful checklists from these pairwise contrastive differences and then use them to resolve the inconsistencies across various perspectives for a consensus.」という手順をとる。
  • 多くの関連研究がある分野だが、多種の手法と比較しても優れていたとのこと。
  • すごくコストをかけてもよい状況下の人っぽいアプローチで興味深い。

Progressive Rectification Prompting

  • Get an A in Math: Progressive Rectification Prompting [42.1]
    CoT(Chain-of-Thought)プロンプト法により,大規模言語モデル(LLM)が推論経路を生成し,算術語問題(MWP)を解くことが可能になった。 77.3から90.5までの8MWPデータセットの平均精度を向上させるために,PRP (Progressive Rectification Prompting) という新しい手法を提案する。
    論文  参考訳(メタデータ)   (Mon, 11 Dec 2023 22:25:57 GMT)
  • 検証修正を繰り返すタイプのプロンプティング手法 Progressive Rectification Prompting (PRP)によってCoTからの性能向上を報告。
  • self-consistency, progressive-hint, progressive rectificationと工夫がされて行っていて面白いが、ここまで性能上がるものなんだろうか。(&日本語でも効果があるんだろうか)

When Do Prompting and Prefix-Tuning Work? A Theory of Capabilities and Limitations

  • When Do Prompting and Prefix-Tuning Work? A Theory of Capabilities and Limitations [105.6]
    コンテキストベースのファインチューニングメソッドは、パラメータのごく一部でフルファインチューニングのパフォーマンスにマッチすることが多いため、人気を集めている。 連続埋め込み空間は離散トークン空間よりも表現力が高いにもかかわらず、ソフトプロンプティングとプレフィックスチューニングは完全な微調整よりも厳密に表現力に乏しいことを示す。
    論文  参考訳(メタデータ)   (Mon, 30 Oct 2023 16:19:34 GMT)
  • in-context learning, soft prompting, prefix tuningといったテクニックの限界(LLM内のスキルは引き出せるが新たなアテンションパターンが必要なタスクには対応できない)を示した論文、「it appears to be still strictly less expressive than full fine-tuning.」というのはそうなんだろうけど、実用的には本当かと思わなくもない挙動を観測したりもする。LLM内のデータが想像以上に多様なんだろうと思う。
  • 「This paper formally showed that fine-tuning techniques working in embedding space, such as soft prompting and prefix-tuning, are strictly more expressive than prompting which operates in the discrete token space.」も面白い。

X-of-Thoughts 

  • Plan, Verify and Switch: Integrated Reasoning with Diverse X-of-Thoughts [65.2]
    我々は,多種多様な推論の思考をLCMに促すことにより,総合的な問題解決フレームワーク XoT を提案する。 各質問に対して、XoTは常に最も適切なメソッドを選択して始まり、各メソッドを反復的に実行する。 各イテレーション内で、XoTは生成された回答の有効性を積極的にチェックし、外部エグゼクタからのフィードバックを取り入れます。
    論文  参考訳(メタデータ)   (Mon, 23 Oct 2023 07:02:20 GMT)
  • of thoughtシリーズのワイルカード版(?)、計画・推論・検証モジュールを持ち、of thoughtな手法を選び使い検証しながら問題を解く。様々なベンチマークで有効性を検証したとのこと。複数手法を組み合わせるアンサンブル的な動きでもあり検証から再計画をするエージェント的な動きでもあり、効果はありそう。
  • リポジトリはGitHub – tengxiaoliu/XoT: EMNLP 2023 Plan, Verify and Switch: Integrated Reasoning with Diverse X-of-Thoughts

Tree Prompting

  • Tree Prompting: Efficient Task Adaptation without Fine-Tuning [112.7]
    Tree Promptingはプロンプトの決定ツリーを構築し、複数のLMコールをリンクしてタスクを解決する。 分類データセットの実験により、Tree Promptingは競合するメソッドよりも精度が向上し、微調整と競合することが示された。
    論文  参考訳(メタデータ)   (Sat, 21 Oct 2023 15:18:22 GMT)
  • ツリー(Decision Tree)+LLM call(の応答)で目的を達しようという論文。Agent関連で用いられるアプローチに似ていて効果はありそう。
  • リポジトリはGitHub – csinva/tree-prompt: Tree prompting: easy-to-use scikit-learn interface for improved prompting.

Set-of-Mark Prompting

  • Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V [103.7]
    大規模マルチモーダルモデルの視覚的グラウンド化能力を解き放つために,新しい視覚的プロンプト手法であるSet-of-Mark(SoM)を提案する。 我々は、SAMのような市販のインタラクティブセグメンテーションモデルを用いて、画像を異なるレベルの粒度の領域に分割し、これらの領域を一連のマークでオーバーレイする。 マークされたイメージを入力として使用することで、GPT-4Vは視覚的な接地を必要とする質問に答えることができる。
    論文  参考訳(メタデータ)   (Tue, 17 Oct 2023 17:51:31 GMT)
  • GPT-4Vに対するプロンプトテクニック、Set-of-Markの提案。速度勝負みたいなところもあるのだろうけど、論文出るの速すぎ・・・
  • 「We show that simply overlaying a number of symbolic marks on a set of regions of an input image can unleash the visual grounding ability of GPT-4V.」とのこと。人間でも画像にガイドを入れるとタスクをやりやすくなるのでアイデアとしてはそうだろうと思うものの、広範な実験・検証はとても参考になる。
  • プロジェクトサイトはSoM-GPT4V

Analogical Prompting

  • Large Language Models as Analogical Reasoners [156.0]
    アナロジカル・プロンプティング(Analogical Prompting)は、大規模言語モデルの推論プロセスを自動的にガイドするように設計されている。 類推的推論にインスパイアされた我々のアプローチは、文脈における関連する経験や知識を自己生成するよう言語モデルに促す。 実験の結果,本手法は様々な推論タスクにおいて,0ショットのCoTと手動のCoTよりも優れていた。
    論文  参考訳(メタデータ)   (Tue, 3 Oct 2023 00:57:26 GMT)
  • 過去の経験を思い出すようにPromptを構成、高い性能を達成とのこと。5 shot CoTを超えているのに驚き。LLM内の知識はどんな量なんだろう。
  • 「Generating relevant and diverse exemplars is important」、「 Single-pass vs. independent exemplar generation: An alternative approach is to independently generate exemplars by separately sampling them from the LLM and then re-prompt the LLM with all the exemplars.」に対し、「single-pass prompt approach achieves comparable performance」、「Through experimentation, we have found that generating K = 3 to 5 exemplars works the best」などFindingsも興味深い。

Reasoning with Language Model Prompting: A Survey

Prompting Large Language Model for Machine Translation: A Case Study 

  • Prompting Large Language Model for Machine Translation: A Case Study [87.9]
    我々は機械翻訳戦略の推進に関する体系的研究を行っている。 本稿では,プロンプトテンプレートと実演例選択の要因について検討する。 本稿では,モノリンガルデータの利用と,クロスリンガル,クロスドメイン,文-文書間伝達学習の実現可能性について検討する。
    論文  参考訳(メタデータ)   (Wed, 18 Jan 2023 11:30:05 GMT)
  • 機械翻訳のためのプロンプト戦略の検討
  • プロンプトテンプレートの作り方や最初の例の与え方が翻訳に大きく影響するようで、その点はそうだろうと思うが、一般的に有効な戦略を作るのはなかなか難しそうとの印象。

Can Large Language Models Truly Understand Prompts?

  • Can Large Language Models Truly Understand Prompts? A Case Study with Negated Prompts [19.4]
    これまでの研究では、言語モデル(LM)のサイズと、異なる下流のNLPタスクにおけるゼロショットのパフォーマンスとの間には、スケーリングの法則が存在することが示されている。 本研究では,この現象が負のプロンプトでタスク上で大きなLMを評価する際には有効ではなく,逆のスケーリング法則を示す。
    論文  参考訳(メタデータ)   (Mon, 26 Sep 2022 14:05:10 GMT)
    • プロンプトの表現を否定形で逆にした場合の動作はどうなるか検証した論文。結果、モデルサイズによらず大規模言語モデルは否定的なプロンプトを解釈できていないように見えるとのこと。
      • この手のモデルを「指示を出せるAI」と表現はできなさそうな結果でプロンプトは「解こうとしているモノ」を雰囲気で指定しているにすぎなさそう(人間でもひっかけ問題で同様の間違いをすることはあるので発展途上なだけかもだが)
    • リポジトリはjoeljang/negated-prompts-for-llms: Can Large Language Models Truly Understand Prompts? A Case Study with Negated Prompts (github.com)