Mixture of insighTful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment

  • Mixture of insighTful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment [103.1]
    従来のアライメント戦略は人間の介入に大きく依存しており、例えばSupervised Fine-Tuning(SFT)やReinforcement Learning from Human Feedback(RLHF)などである。 本稿では、AlignCoTと呼ばれる思考の連鎖(CoT)アプローチを利用した新しい自己アライメント手法を提案する。 本稿では、AlignCoTプロセスの各コンポーネントを強化するために専門家の混合を適用し、アライメント効率を著しく向上させるMoTEアーキテクチャについて紹介する。
    論文  参考訳(メタデータ)   (Wed, 03 Jul 2024 15:04:25 GMT)
  • CoT的手法を用いた自己アライメント手法ALignCoT とさらにそれを効率化するMoTE(Mixture of insighTful Experts)の提案。
  • 「Safety alignment is essential for LLMs.Existing approaches like SFT and RLHF rely extensively on human annotation, whereas self-alignment strategies depend on LLMs’ emergent abilities.」はそうなんだろうと思うのだけど、強力な自己アライメント手法が安全につながるのかはどうなんだろう。。。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です