コンテンツへスキップ
- MultiBench: Multiscale Benchmarks for Multimodal Representation Learning [87.2]
MultiBenchは15のデータセット、10のモダリティ、20の予測タスク、6の研究領域にまたがる、体系的で統一されたベンチマークである。 データローディング、実験的なセットアップ、モデル評価を簡素化し、標準化する、エンドツーエンドの自動機械学習パイプラインを提供する。 大規模なマルチモーダルデータセットに対するロバストネスや、現実的な不完全性に対するロバストネスなど、将来の研究に対する影響の高い課題が紹介されている。
論文 参考訳(メタデータ) (Thu, 15 Jul 2021 17:54:36 GMT) - マルチモーダルなベンチマーク。扱われている領域とデータセットは下記の通り。データの概要はhttps://cmu-multicomp-lab.github.io/multibench/datasets/に詳しい。
- Affective computing: MUStARD, CMU-MOSI, UR-FUNNY, CMU-MOSEI
- Healthcare: MIMIC
- Robotics: MuJoCo Push, Vision & Touch
- Finance: Stocks-food, Stocks-health, Stocks-tech
- HCI: ENRICO
- Multimedia: AV-MNIST, MM-IMDb, Kinetics400-S, Kinetics400-L
- 評価はPerformance、Complexity、Robustnessで行われるとのこと。Learderboardがどうなるか楽しみ。
- https://cmu-multicomp-lab.github.io/multibench/ と https://github.com/pliang279/MultiBench が公式サイト&リポジトリ
- MMGCN: Multimodal Fusion via Deep Graph Convolution Network for Emotion Recognition in Conversation [32.2]
本研究では,マルチモーダル融合グラフ畳み込みネットワークMMGCNに基づく新しいモデルを提案する。 MMGCNは、マルチモーダル依存関係を効果的に活用できるだけでなく、話者間の依存性や話者内依存性をモデル化するために話者情報を利用することもできる。 提案したモデルを,IEMOCAPとMELDという2つの公開ベンチマークデータセット上で評価し,MMGCNの有効性を実証した。
論文 参考訳(メタデータ) (Wed, 14 Jul 2021 15:37:02 GMT)- 音響+テキスト+画像というマルチモーダルなデータを扱って(+GCNで)感情認識タスクで優れた性能を出したという報告。マルチモーダルな情報を活用できるモデルであるが、SOTAのスコアには至っていないような・・・?
- VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer [76.4]
言語理解を改善するためのビデオ言語知識蒸留法VidLanKDを提案する。 我々は、ビデオテキストデータセット上でマルチモーダル教師モデルを訓練し、その知識をテキストデータセットを用いて学生言語モデルに伝達する。 我々の実験では、VidLanKDはテキストのみの言語モデルや発声モデルよりも一貫した改善を実現している。
論文 参考訳(メタデータ) (Tue, 6 Jul 2021 15:41:32 GMT)- ビデオテキストデータセットでまずマルチモーダルモデルを構築、蒸留の枠組みで言語モデル構築に利用する研究。SQuAD等のデータセットで効果を確認したとのこと。画像とテキストの融合が、テキストオンリーのタスクにも有効というのが興味深い。
- CLIP-It! Language-Guided Video Summarization [96.7]
この作業では、一般的性とクエリにフォーカスしたビデオ要約に対処する単一のフレームワークであるCLIP-Itを導入する。 本稿では,言語誘導型マルチモーダルトランスフォーマーを提案する。 本モデルは教師なしの設定に拡張することができる。 標準ビデオ要約データセット (tvsum と summe) とクエリ指向ビデオ要約データセット (qfvs) の両方において,ベースラインと先行作業とを有意差で上回っている。 本手法は強い一般化能力を示すため,転送設定の大幅な改善を実現した。
論文 参考訳(メタデータ) 参考訳(全文) (Thu, 1 Jul 2021 17:59:27 GMT)- ビデオの各フレームをキャプショニング、スコアリングしてフレームからキーショットを選択。エンコーディングにCLIPを利用すると優れた性能が出せるとのこと。
- Probing Inter-modality: Visual Parsing with Self-Attention for Vision-Language Pre-training [139.5]
Vision-Language Pre-Trainingは、画像とテキストのペアからマルチモーダル表現を学ぶことを目的としている。 CNNは、長距離依存をモデル化する際の局所受容野の弱点により、視覚的関係学習に制限がある。 本研究では,視覚関係をよりよく学習し,モーダル間アライメントを促進するために,VLPのためのフルトランスフォーマー視覚埋め込みを提案する。。
論文 参考訳(メタデータ) (Mon, 28 Jun 2021 04:42:48 GMT)- マルチモーダルな事前学習モデルのため画像認識部分にもself-attentionを導入、MLM(Masked Language Modeling)、ITM(Image- Text Matching)、MFR(Masked Feature Regression)を活用してモデルを構築し、UNITERやSOHOを上回る性能を出したとのこと。
- Multimodal Few-Shot Learning with Frozen Language Models [36.8]
十分な規模でトレーニングを行うと、自動回帰言語モデルは、ほんの数例で促された後、新しい言語タスクを学習する顕著な能力を示す。 本稿では,このマイナショット学習能力をマルチモーダル環境(ビジョンと言語)に移すための,単純かつ効果的なアプローチを提案する。我々は視覚エンコーダを訓練し、各画像を連続的な埋め込みの列として表現し、この接頭辞で誘導される事前学習された凍結言語モデルが適切なキャプションを生成するようにした。 得られたシステムはマルチモーダルな数ショット学習者であり、実例で条件付けされた場合、驚くほど多くの新しいタスクを学習できる。
論文 参考訳(メタデータ) (Fri, 25 Jun 2021 21:07:09 GMT)- 事前学習を行った言語モデルをマルチモーダル環境(画像とテキスト)に拡張する研究。言語モデルを構築しフリーズ。画像エンコーダをprompt作成用に構築。組み合わせるとマルチモーダルなFewShot可能なモデルとなるよう。
- ほんとか?という感じで面白い結果。
- GEM: A General Evaluation Benchmark for Multimodal Tasks [25.8]
マルチモーダルタスクの総合評価ベンチマークとしてGEMを提案する。 GEMは、画像言語タスクのGEM-Iとビデオ言語タスクのGEM-Vからなる大規模な視覚言語ベンチマークである。 我々は,多言語マルチモーダル研究の発展を目指して,データセット,コード,ベースラインモデルをリリースする。
論文 参考訳(メタデータ) (Fri, 18 Jun 2021 03:14:13 GMT)
- MERLOT: Multimodal Neural Script Knowledge Models [74.1]
我々はMERLOTを紹介した。MERLOTは、翻訳された音声で何百万ものYouTubeビデオを視聴することで、マルチモーダルなスクリプト知識を学習するモデルである。 MERLOTは、時間的コモンセンスの強力なアウトオブボックス表現を示し、12の異なるビデオQAデータセット上で最先端のパフォーマンスを達成する。 Visual Commonsense Reasoning では、MERLOT が80.6%の精度で正解し、同じ大きさの最先端のモデルを3%以上上回っている。
論文 参考訳(メタデータ) (Fri, 4 Jun 2021 17:57:39 GMT)- マルチモーダル事前学習モデル。ファインチューニングによって多くのタスクでsota。性能の向上幅も大きい。
- DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video Summarization [127.2]
DeepQAMVSと呼ばれるマルチビデオ要約のための新しいQuery-Aware階層型ポインタネットワークを紹介します。 DeepQAMVSは強化学習で訓練され、代表性、多様性、クエリ適応性、時間的コヒーレンスを捉えた報酬を取り入れている。 MVS1Kデータセットで最新の結果を達成し、入力されたビデオフレームの数と線形に推論時間をスケーリングします。
論文 参考訳(メタデータ) (Thu, 13 May 2021 17:33:26 GMT)- 究極的なマルチモーダルであると同時に、強化学習のフレームワークを利用して性能を出している点が興味深い。
- Self-supervised object detection from audio-visual correspondence [101.5]
我々は、教師なしで物体検出器を学習する問題に取り組む。 画像レベルのクラスラベルは想定せず、代わりにオーディオビジュアルデータから監視信号を抽出します。物体検出と音源定位という課題において、従来の教師なし・弱教師付き検出器よりも優れる。 我々はまた、この検出器を1つの擬似クラスごとに1つのラベルで正解クラスに合わせることができ、飛行機や猫のような計器を超える一般的な物体を検出する方法を学ぶことができることを示す。
論文 参考訳(メタデータ) (Tue, 13 Apr 2021 17:59:03 GMT)- 映像+音声を用いる自己教師あり学習。なんとなく人間に近づいていっているような感がある。
- MultiModalQA: Complex Question Answering over Text, Tables and Images [52.3]
テキスト,テーブル,画像に対する共同推論を必要とするデータセットであるMultiModalQAを提案する。 大規模で複雑なマルチモーダル質問を生成するための新しいフレームワークを使用してMMQAを作成します。 次に、単一のモダリティから回答できる質問を受け取り、それらを組み合わせてクロスモーダルな質問を生成する形式言語を定義します。
論文 参考訳(メタデータ) (Tue, 13 Apr 2021 09:14:28 GMT)