MultiBench: マルチモーダルなベンチマーク

  • MultiBench: Multiscale Benchmarks for Multimodal Representation Learning [87.2]
    MultiBenchは15のデータセット、10のモダリティ、20の予測タスク、6の研究領域にまたがる、体系的で統一されたベンチマークである。 データローディング、実験的なセットアップ、モデル評価を簡素化し、標準化する、エンドツーエンドの自動機械学習パイプラインを提供する。 大規模なマルチモーダルデータセットに対するロバストネスや、現実的な不完全性に対するロバストネスなど、将来の研究に対する影響の高い課題が紹介されている。
    論文  参考訳(メタデータ)   (Thu, 15 Jul 2021 17:54:36 GMT)
  • マルチモーダルなベンチマーク。扱われている領域とデータセットは下記の通り。データの概要はhttps://cmu-multicomp-lab.github.io/multibench/datasets/に詳しい。
    • Affective computing: MUStARD, CMU-MOSI, UR-FUNNY, CMU-MOSEI
    • Healthcare: MIMIC
    • Robotics: MuJoCo Push, Vision & Touch
    • Finance: Stocks-food, Stocks-health, Stocks-tech
    • HCI: ENRICO
    • Multimedia: AV-MNIST, MM-IMDb, Kinetics400-S, Kinetics400-L
  • 評価はPerformance、Complexity、Robustnessで行われるとのこと。Learderboardがどうなるか楽しみ。
  • https://cmu-multicomp-lab.github.io/multibench/https://github.com/pliang279/MultiBench が公式サイト&リポジトリ

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です