コンテンツへスキップ
- Open-world Story Generation with Structured Knowledge Enhancement: A Comprehensive Survey [25.9]
本稿では,既存の手法が構造的知識をストーリー生成にどのように統合するかについて,体系的な分類法を提案する。 知識に富んだストーリー生成の課題について多次元的な洞察を与える。
論文 参考訳(メタデータ) (Fri, 9 Dec 2022 02:19:07 GMT)
- ストーリー生成に関するサーベイ。長文かつ一貫性が必要など非常に難しいタスク。外部データの活用を軸としたサーベイ。
- A Survey on Medical Document Summarization [40.8]
インターネットは医療業界に劇的な影響を与えており、文書をデジタルで保存、共有、管理することができる。 これにより、重要なデータを見つけ、共有しやすくなり、患者のケアを改善し、医学研究の機会を増やした。
論文 参考訳(メタデータ) (Sat, 3 Dec 2022 18:46:44 GMT)
- 医療ドメインのマルチドキュメント要約に関するサーベイ
- NLP全般の傾向かもしれないが、最近の盛り上がりを感じる内容
- Backdoor Vulnerabilities in Normally Trained Deep Learning Models [23.8]
本研究は,通常訓練されたモデルにおいて,20種類のバックドア攻撃をガイダンスとして活用し,その対応性について検討する。 インターネットからダウンロードされる56のモデルには、315の自然のバックドアがあり、あらゆるカテゴリがカバーされています。 既存のスキャナーは、注入されたバックドア用に設計されており、少なくとも65個のバックドアを検知することができる。
論文 参考訳(メタデータ) (Tue, 29 Nov 2022 04:55:32 GMT)
- 普通のモデルに存在し、Poisoningなどを用いなくても利用可能なNatural backdoorに関して整理した論文。
- 意図せず存在している点が悩ましい。
- Deepfake Detection: A Comprehensive Study from the Reliability Perspective [46.2]
Deepfake合成材料はインターネット上で流通し、社会に深刻な影響を与えている。 本稿では,Deepfake検出の3つの側面,すなわち伝達可能性,解釈可能性,信頼性について検討する。
論文 参考訳(メタデータ) (Sun, 20 Nov 2022 06:31:23 GMT)
- Deepfake検出に関するサーベイ
- 生成にも検出にも近い技術が使われており、いたちごっこ感が凄い……
- A Survey on Backdoor Attack and Defense in Natural Language Processing [18.3]
NLP分野におけるバックドア攻撃と防御の総合的な検討を行う。 ベンチマークデータセットを要約し、バックドア攻撃を防ぐために信頼できるシステムを設計するためのオープンな問題を指摘した。
論文 参考訳(メタデータ) (Tue, 22 Nov 2022 02:35:12 GMT)
- NLPにおける攻撃と防御のサーベイ
- 短めでざっくりと状況を知るのに良いサーベイ。自然言語一般かもしれないが、良いメトリクスが無いというのはつらいなーと思う(スコアリングモデル自体が攻撃対象になっているとめっちゃ大変そう)
- The Lean Data Scientist: Recent Advances towards Overcoming the Data Bottleneck [16.2]
機械学習(ML)は、ほとんどすべての科学と産業に影響を及ぼし、世界を変えつつある。 最近のアルゴリズムはますますデータに飢えており、トレーニングには大規模なデータセットが必要である。 しかし、そのような規模の高品質なデータセットを取得することは難しい課題である。
論文 参考訳(メタデータ) (Tue, 15 Nov 2022 07:44:56 GMT)
- データが少ない問題に対応する手法を整理した論文
- それほど長くもなく頭の整理には良いなと思う。
- The Technological Emergence of AutoML: A Survey of Performant Software and Applications in the Context of Industry [72.1]
Automated/Autonomous Machine Learning (AutoML/AutonoML)は比較的若い分野である。 このレビューは、このトピックに関する知識に2つの主要な貢献をしている。 オープンソースと商用両方の既存のAutoMLツールについて、最新かつ包括的な調査を提供する。
論文 参考訳(メタデータ) (Tue, 8 Nov 2022 10:42:08 GMT)
- AutoMLのサーベイ、細部まで包括的で122ページ、引用数583と大規模
- Multilingual Multimodality: A Taxonomical Survey of Datasets, Techniques, Challenges and Opportunities [10.7]
マルチ言語とマルチモーダル(MultiX)ストリームの統合について検討する。 我々は、並列アノテーションで研究された言語、金または銀のデータを調べ、これらのモダリティと言語がモデリングにおいてどのように相互作用するかを理解する。 モデリングアプローチの長所と短所とともに、どのシナリオを確実に使用できるのかをよりよく理解するために、モデリングアプローチについて説明します。
論文 参考訳(メタデータ) (Sun, 30 Oct 2022 21:46:01 GMT)
- Deep Generative Models on 3D Representations: A Survey [31.8]
変分オートエンコーダ(VAE)やGAN(Generative Adversarial Network)などの深層生成モデルは、2次元画像合成において大きな進歩を遂げている。本質的に効率的な表現(ピクセルグリッド)を持つ2D画像とは異なり、3Dデータを表現することははるかに多くの課題に直面する可能性がある。
論文 参考訳(メタデータ) (Thu, 27 Oct 2022 17:59:50 GMT)- point cloud、mesh、voxel grid 等をアウトプットとする、3次元データ生成モデルのサーベイ
- State of the Art in Dense Monocular Non-Rigid 3D Reconstruction [101.0]
モノクル2D画像から変形可能なシーン(または非剛体)の3D再構成は、コンピュータビジョンとグラフィックスの長年、活発に研究されてきた領域である。 本研究は,モノクラー映像やモノクラービューの集合から,様々な変形可能な物体や複合シーンを高密度に非剛性で再現するための最先端の手法に焦点を当てる。
論文 参考訳(メタデータ) (Thu, 27 Oct 2022 17:59:53 GMT)