Data Distillationのサーベイ

  • Data Distillation: A Survey [8.5]
    ディープラーニングは、膨大な数の大規模および多言語データセットのキュレーションにつながった。 個々のタスクで人間に近いパフォーマンスを持つにもかかわらず、大規模なデータセットでパラメータハングリーモデルをトレーニングすることは、多面的な問題を引き起こす。 データ蒸留アプローチは、元のデータセットの効果的なドロップイン置換として機能する、簡潔なデータ要約を合成することを目的としている。
    論文  参考訳(メタデータ)   (Wed, 11 Jan 2023 02:25:10 GMT)

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です