- Symbolic Chain-of-Thought Distillation: Small Models Can Also “Think” Step-by-Step [122.6]
思考の連鎖は、素数大言語モデルに彼らの予測の合理化を口頭で示すよう促す。 オーダーオブマグニチュードの小さなモデルでも、チェーンオブ思想のプロンプトの恩恵を受けられることを示す。 そこで我々は,より大規模な教師モデルから抽出した合理化に基づいて,より小さな学生モデルを訓練する方法であるSymbolic Chain-of-Thought Distillation (SCoTD)を紹介した。
論文 参考訳(メタデータ) (Sat, 24 Jun 2023 20:15:07 GMT) - 小規模なモデルでもChain of Thougthが有効であること、また、それを生かすために有効な蒸留方法Symbolic Chain-of-thought Distillation (SCoTD)の提案。タスクにもよるがベンチマーク結果からはかなり有効な手法に見える。
- リポジトリはhttps://github.com/allenai/cot_distillationとのことだが、現時点では404
タグ: Chain of Thought
LATM: LLMs As Tool Makers
- Large Language Models as Tool Makers [53.8]
我々は,LLMが独自の再利用可能なツールを作成する,LLMs As Tool Makers (LATM) と呼ばれるクローズドループフレームワークを提案する。 1) ツール作成: LLMは与えられたタスクのためのツールを作成するツールメーカーとして機能し、そこでツールはPythonユーティリティ関数として実装されます。 我々は,Big-Benchタスクを含む様々な複雑な推論タスクに対するアプローチの有効性を検証する。
論文 参考訳(メタデータ) (Fri, 26 May 2023 17:50:11 GMT) - GPT-4でツールを作りGPT-3.5-turboが利用するアプローチでGPT-3.5-turbo単体のCoTを大きく超えた性能を発揮し、かつコストも抑えられる、GPT-4を常に使用する場合に比べてコストパフォーマンスが高いというのが興味深い。
- リポジトリはGitHub – ctlllll/LLM-ToolMaker
MultiTool-CoT
- MultiTool-CoT: GPT-3 Can Use Multiple External Tools with Chain of Thought Prompting [23.6]
推論過程において,計算機や知識検索などの外部ツールを組み込んだMultiTool-CoTを提案する。 NumGLUEのタスク2データセットにMultiTool-CoTを適用し,数値推論とドメイン固有知識の両方を必要とする。
論文 参考訳(メタデータ) (Fri, 26 May 2023 13:00:58 GMT) - Toolを組み込んだCoT、NumGLUEで効果を確認とのこと。
SOCRATIC COT
- Distilling Reasoning Capabilities into Smaller Language Models [83.7]
思考の連鎖(CoT)のようなステップバイステップの推論アプローチは、大規模言語モデルにおける推論能力の誘導に非常に効果的であることが証明されている。 しかし、CoTアプローチの成功は基本的にモデルのサイズに結びついており、CoTを機能させるためには数十億のパラメータスケールモデルが必要であることが多い。 本研究では,大規模モデルのCoT推論能力を段階的に活用し,これらの能力をより小さなモデルに蒸留する知識蒸留手法を提案する。
論文 参考訳(メタデータ) (Thu, 18 May 2023 04:44:51 GMT) - 大規模なモデルから得たCoTの出力を小さなモデルに適用する取り組み。CoTをより細かいQAに分解し、Question GeneratorモデルとQAモデルを学習する仕組みのよう。小さなモデル (GPT-2 large) で10倍のモデル (GPT-3 6B)をout performしたとのこと。
- リポジトリはGitHub – kumar-shridhar/Distiiling-LM: The code for the paper : Distilling Reasoning Capabilities into Smaller Language Models
Chain-of-Thoughtの改善
マルチモーダル化、プロンプトの合成、新たな構築フレームワークとChain-of-Thoughtに関する改善を対象とした論文が複数出ていた。有用なテクニックとして認知されたのかなと思う&改善が結構な幅で行われているのが凄い。
- Multimodal Chain-of-Thought Reasoning in Language Models [80.9]
大規模言語モデル(LLM)は、チェーン・オブ・ソート(CoT)を利用して複雑な推論において印象的な性能を示した。 本稿では,視覚機能を分離したトレーニングフレームワークに組み込んだマルチモーダルCoTを提案する。 Multimodal-CoTでは、ScienceQAベンチマークで10億のパラメータ未満のモデルで、従来の最先端のLCM(GPT-3.5)を16%(75.17%->91.68%)上回るパフォーマンスを実現しています。
論文 参考訳(メタデータ) (Thu, 2 Feb 2023 07:51:19 GMT)
- Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models [121.5]
大規模言語モデルはチェーン・オブ・ソート・プロンプトを使用して様々な推論タスクを実行でき、ステップ・バイ・ステップのデモを通じて回答を見つけることができる。 そこで本研究では,手作りの例を数種類活用して,モデルにさらに多くの例を生成する手法であるSynthetic promptingを紹介する。 本手法は数値的,記号的,アルゴリズム的推論タスクにおいて評価し,既存のプロンプト手法よりも優れていることを示す。
論文 参考訳(メタデータ) (Wed, 1 Feb 2023 17:33:12 GMT)
- Faithful Chain-of-Thought Reasoning [29.9]
CoT(Chain-of-Thought)は、複雑な推論タスクにおいて、言語モデル(LM)のパフォーマンスを高める。 推論タスクを2段階に分解する忠実な構築フレームワークであるFithful CoTを提案する。 提案手法は,4つの異なる領域の10の推論データセットに対して有効であることを示す。
論文 参考訳(メタデータ) (Tue, 31 Jan 2023 03:04:26 GMT)
What do LLMs Know about Financial Markets? A Case Study on Reddit Market Sentiment Analysis
- What do LLMs Know about Financial Markets? A Case Study on Reddit Market Sentiment Analysis [15.2]
ソーシャルメディアコンテンツに対する市場の感情分析には、金融市場とソーシャルメディアのジャーゴンの両方の知識が必要である。 我々のパイプラインは、大きな言語モデル(LLM)を用いたReddit投稿の弱い財務感情ラベルを生成する。 少数のプロンプトだけで、最終モデルは既存の教師付きモデルと同等に実行される。
論文 参考訳(メタデータ) (Wed, 21 Dec 2022 19:11:19 GMT) - 大規模言語モデルから知識を得て小さなモデルを学習、ベースラインよりも優れた性能を達成、という報告。金融領域というのも興味深い。(本論ではないがPaLM+CoTめっちゃ優秀やなという感想)
BIG-Bench Hard
- Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them [108.5]
我々は,BIG-Bench Hard (BBH) と呼ばれる,BIG-Benchタスクに挑戦する23のスイートに焦点を当てる。 BBHタスクへのチェーン・オブ・ソウト(CoT)の適用により、PaLMは23タスクのうち10タスクにおいて平均的な人間レータ性能を上回り、Codexは23タスクのうち17タスクにおいて平均的な人間レータ性能を上回ります。
論文 参考訳(メタデータ) (Mon, 17 Oct 2022 17:08:26 GMT)- BIG-Benchで人のスコアを上回らなかった23タスクに焦点を当て、Chain of Thoughtの適用で10 or 17タスクで性能の改善が見られたとのこと。
- CoTめっちゃ強力…
- プロジェクトサイトはsuzgunmirac/BIG-Bench-Hard: BIG-Bench-Hard (github.com)
- BIG-Benchで人のスコアを上回らなかった23タスクに焦点を当て、Chain of Thoughtの適用で10 or 17タスクで性能の改善が見られたとのこと。
Automatic Chain of Thought
- Automatic Chain of Thought Prompting in Large Language Models [20.5]
大規模言語モデル(LLM)は中間的推論ステップを生成することで複雑な推論を行うことができる。 「ステップ・バイ・ステップ」は、デモのための推論チェーンを1つずつ生成します。 自動CoTプロンプト法を提案する。
論文 参考訳(メタデータ) (Fri, 7 Oct 2022 12:28:21 GMT)- Chain of Thoughtの自動化、マニュアルの対応に比べても優れた性能を達成。
Multilingual Grade School Math (MGSM) ベンチマーク
- Language Models are Multilingual Chain-of-Thought Reasoners [83.4]
本稿では,250の小学校数学問題を10の類型的多言語に手動で翻訳することで,多言語学級数学のベンチマークを導入する。 MGSM問題をチェーン・オブ・ソートにより解く能力は,モデルスケールの増大とともに出現する。 言語モデルの多言語推論能力は他のタスクにも及んでいることを示す。
論文 参考訳(メタデータ) (Thu, 6 Oct 2022 17:03:34 GMT)- GSM8Kデータセットから,250の問題を手動で翻訳して Multilingual Grade School Math (MGSM)ベンチマークを作成し多言語における大規模言語モデルの性能評価
- EN-COT > Native-COTである点は興味深い(そして翻訳を介するのがもっとの性能が高いのも…)
- リポジトリはgoogle-research/url-nlp (github.com)
SQA(Science Question Answering)、SCIENCEQAベンチマーク
- Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering [124.2]
本稿では,SQA(Science Question Answering)について紹介する。SQA(Science Question Answering)は,21万のマルチモーダルな複数選択質問と多様な科学トピックと,それに対応する講義や説明による回答の注釈からなる新しいベンチマークである。 また,SQAでは,数ショットのGPT-3では1.20%,微調整のUnifiedQAでは3.99%の改善が見られた。 我々の分析は、人間に似た言語モデルは、より少ないデータから学習し、わずか40%のデータで同じパフォーマンスを達成するのに、説明の恩恵を受けることを示している。
論文 参考訳(メタデータ) (Tue, 20 Sep 2022 07:04:24 GMT)- 21kからなるマルチモーダル、マルチホップを含むQAデータセット。注釈等も付与されている。GPT-3 & chain-of-thought (CoT)で正解率75.17%とのこと。
- 既に低くないのでは?と思わなくもない。
- プロジェクトサイトはScienceQA
- 21kからなるマルチモーダル、マルチホップを含むQAデータセット。注釈等も付与されている。GPT-3 & chain-of-thought (CoT)で正解率75.17%とのこと。