コンテンツへスキップ
- What do LLMs Know about Financial Markets? A Case Study on Reddit Market Sentiment Analysis [15.2]
ソーシャルメディアコンテンツに対する市場の感情分析には、金融市場とソーシャルメディアのジャーゴンの両方の知識が必要である。 我々のパイプラインは、大きな言語モデル(LLM)を用いたReddit投稿の弱い財務感情ラベルを生成する。 少数のプロンプトだけで、最終モデルは既存の教師付きモデルと同等に実行される。
論文 参考訳(メタデータ) (Wed, 21 Dec 2022 19:11:19 GMT)
- 大規模言語モデルから知識を得て小さなモデルを学習、ベースラインよりも優れた性能を達成、という報告。金融領域というのも興味深い。(本論ではないがPaLM+CoTめっちゃ優秀やなという感想)
- Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them [108.5]
我々は,BIG-Bench Hard (BBH) と呼ばれる,BIG-Benchタスクに挑戦する23のスイートに焦点を当てる。 BBHタスクへのチェーン・オブ・ソウト(CoT)の適用により、PaLMは23タスクのうち10タスクにおいて平均的な人間レータ性能を上回り、Codexは23タスクのうち17タスクにおいて平均的な人間レータ性能を上回ります。
論文 参考訳(メタデータ) (Mon, 17 Oct 2022 17:08:26 GMT)
- Automatic Chain of Thought Prompting in Large Language Models [20.5]
大規模言語モデル(LLM)は中間的推論ステップを生成することで複雑な推論を行うことができる。 「ステップ・バイ・ステップ」は、デモのための推論チェーンを1つずつ生成します。 自動CoTプロンプト法を提案する。
論文 参考訳(メタデータ) (Fri, 7 Oct 2022 12:28:21 GMT)- Chain of Thoughtの自動化、マニュアルの対応に比べても優れた性能を達成。
- Language Models are Multilingual Chain-of-Thought Reasoners [83.4]
本稿では,250の小学校数学問題を10の類型的多言語に手動で翻訳することで,多言語学級数学のベンチマークを導入する。 MGSM問題をチェーン・オブ・ソートにより解く能力は,モデルスケールの増大とともに出現する。 言語モデルの多言語推論能力は他のタスクにも及んでいることを示す。
論文 参考訳(メタデータ) (Thu, 6 Oct 2022 17:03:34 GMT)- GSM8Kデータセットから,250の問題を手動で翻訳して Multilingual Grade School Math (MGSM)ベンチマークを作成し多言語における大規模言語モデルの性能評価
- EN-COT > Native-COTである点は興味深い(そして翻訳を介するのがもっとの性能が高いのも…)
- リポジトリはgoogle-research/url-nlp (github.com)
- Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering [124.2]
本稿では,SQA(Science Question Answering)について紹介する。SQA(Science Question Answering)は,21万のマルチモーダルな複数選択質問と多様な科学トピックと,それに対応する講義や説明による回答の注釈からなる新しいベンチマークである。 また,SQAでは,数ショットのGPT-3では1.20%,微調整のUnifiedQAでは3.99%の改善が見られた。 我々の分析は、人間に似た言語モデルは、より少ないデータから学習し、わずか40%のデータで同じパフォーマンスを達成するのに、説明の恩恵を受けることを示している。
論文 参考訳(メタデータ) (Tue, 20 Sep 2022 07:04:24 GMT)- 21kからなるマルチモーダル、マルチホップを含むQAデータセット。注釈等も付与されている。GPT-3 & chain-of-thought (CoT)で正解率75.17%とのこと。
- プロジェクトサイトはScienceQA