MaLA-500

Orion-14B: Open-source Multilingual Large Language Models

Towards Boosting Many-to-Many Multilingual Machine Translation with Large Language Models

The Unreasonable Effectiveness of Easy Training Data for Hard Tasks

SciGLM

  • SciGLM: Training Scientific Language Models with Self-Reflective Instruction Annotation and Tuning [60.1]
    LLM(Large Language Models)は、科学的な発見を支援することを約束している。 我々はSciGLMを紹介した。SciGLMは大学レベルの科学的推論を行うことができる科学言語モデルのスイートである。 より広い研究コミュニティの利益のために、私たちはSciInstruct、SciGLM、そして自己表現フレームワークと微調整コードをリリースします。
    論文  参考訳(メタデータ)   (Mon, 15 Jan 2024 20:22:21 GMT)
  • LLMの科学分野の能力を向上するデータ作成フレームワークを提案、モデルを構築し高い性能を達成。C-Eval Hardなど中国語のタスクにおいてはGPT-4をこえているように見える。CoT、self-reflective frameworkなど様々なテクニックを使ってデータを作るアプローチ。
  • リポジトリはTHUDM/SciGLM: SciGLM: Training Scientific Language Models with Self-Reflective Instruction Annotation and Tuning (github.com)

Question Translation Training for Better Multilingual Reasoning

  • Question Translation Training for Better Multilingual Reasoning [113.5]
    大規模言語モデルは推論タスクにおいて魅力的なパフォーマンスを示すが、英語以外の言語ではより悪いパフォーマンスを示す傾向がある。 典型的な解決策は、命令データを興味のあるすべての言語に翻訳し、結果の多言語データをトレーニングすることである。 質問のアライメントは、翻訳学習アプローチよりも一貫した改善をもたらすことを示す。
    論文  参考訳(メタデータ)   (Mon, 15 Jan 2024 16:39:10 GMT)
  • 多言語環境でLLMのパフォーマンスを上げるため単純に翻訳データを使うのではなく、Stage I: Question Alignment(質問を英語に翻訳するタスク)、Stage II: Response Alignment(英語または混合の質問回答ペアでのチューニング)の2ステージ構成を提案。「Question alignment stage enables LLM’s proficiency in English to be transferred to nonEnglish tasks.」とあって面白い。
  • リポジトリはNJUNLP/QAlign (github.com)

Tuning Language Models by Proxy 

  • Tuning Language Models by Proxy [117.1]
    プロキシチューニングは、ブラックボックスLM上で動作する軽量な復号時間アルゴリズムである。 我々の研究は、小さく調整されたLMを使用して、大規模で潜在的にプロプライエタリなLMを効率的にカスタマイズする可能性を実証している。
    論文  参考訳(メタデータ)   (Tue, 16 Jan 2024 18:49:55 GMT)
  • (チューニングした)小規模LMを用いて大規模LMのチューニングを行えるという報告。untunedなモデルとtunedなモデルの差を見るアプローチ。「when we apply proxy-tuning to LLAMA2-70B using proxies of only 7B size, we can close 88% of the gap between LLAMA2-70B and its truly-tuned CHAT version」とのこと。
  • 「proxy-tuning addresses an important issue about how to efficiently adapt proprietary models to diverse use cases.」とある通りビジネスでのユースケースは多そう。

Self-Rewarding Language Models

Mixtral of Experts 

  • Mixtral of Experts [57.4]
    Mixtral 8x7Bはスパース・ミックス・オブ・エキスパートズ(SMOE)言語モデルである。 Mixtralは数学、コード生成、多言語ベンチマークでLlama 270Bをはるかに上回っている。 また、GPT-3.5 Turbo、Claude-2.1、Gemini Pro、Llama 2 70Bを超越したMixtral 8x7B – Instructという命令に従うように微調整されたモデルも提供する。
    論文  参考訳(メタデータ)   (Mon, 8 Jan 2024 18:47:34 GMT)
  • 高性能で話題になったMixtralの論文。「Surprisingly, we do not observe obvious patterns in the assignment of experts based on the topic.」は驚き
  • Mixtral of experts | Mistral AI | Open-weight models

DIALIGHT

  • DIALIGHT: Lightweight Multilingual Development and Evaluation of Task-Oriented Dialogue Systems with Large Language Models [76.8]
    DIALIGHTは多言語タスク指向対話(ToD)システムの開発と評価のためのツールキットである。 ローカル発話レベルとグローバル対話レベルの両方において、人間のきめ細かい評価のためのセキュアでユーザフレンドリーなWebインターフェースを備えている。 評価の結果, PLMの微調整により精度とコヒーレンスが向上する一方, LLMベースのシステムは多様で類似した応答を生成するのに優れていた。
    論文  参考訳(メタデータ)   (Thu, 4 Jan 2024 11:27:48 GMT)
  • 多言語に対応したタスク志向対話システムを開発するためのツールキットの提案。PLMのfine tuning、ICLに対応。mT5 + fine tuningがGPT-3.5 + In-context learningより優れていることも多いのが興味深い。
  • リポジトリはhttps://github.com/cambridgeltl/e2e_tod_toolkitだが現時点ではNotFound