- Towards Stable and Effective Reinforcement Learning for Mixture-of-Experts [113.1]
オフ・ポリティクス強化学習(RL)における重要サンプリング重み付けを最適化する新しいルータ認識手法を提案する。 具体的には、ルータロジットによって誘導される再スケーリング戦略を設計し、勾配のばらつきを効果的に低減し、トレーニングのばらつきを軽減する。 実験により, 本手法は収束安定性とMoEモデルの最終的な性能の両方を著しく改善することが示された。
論文 参考訳(メタデータ) (Mon, 27 Oct 2025 05:47:48 GMT) - MoEに対する強化学習のための「Router-Shift Policy Optimization (RSPO), an RL algorithm specifically designed for MoE architectures to achieve stable and efficient training.」を提案。
タグ: Mixture of Experts
MiniMax M2, Kimi-Linear, Ling-V2, Ouro, Emu3.5, gpt-oss-safeguard
先週は公開モデルの話題が多く、その中でもMiniMax-M2 とKimi-Linearは要注目。特に後者は効率性も高い。先週のRingとややこしいが、Ling-V2も強力なモデルである(This report focuses on three reflex-grade non-thinking (instruct) models in the Ling 2.0 family—Ling-mini-2.0, Ling-flash-2.0, and Ling-1T. These models emphasize general reasoning and instruction-following capability, while the Ring series (Ling-Team, 2025), built upon the same Ling 2.0 base, extends toward deep thinking models.とのこと)。また、小型モデルであるOuro-2.6B 、Ouro-2.6B-Thinkingも興味深かった。
上記とは異なるがマルチモーダルなEmu3.5、分類タスク(safety classification tasks)用のgpt-oss-safeguardなど強力なモデルが公開されるのは良いことだと思う。(最後の例は想定活用例が他とはだいぶ異なりそうではあるが。。)
- Kimi Linear: An Expressive, Efficient Attention Architecture [75.9]
Kimi Linearはハイブリッドな線形アテンションアーキテクチャで、初めて、公正な比較で完全にアテンションを上回ります。 中心となるKimi Delta Attention (KDA)は、Gated DeltaNetを拡張した表現力のある線形アテンションモジュールである。 我々は,Kimi Linearがより優れた性能と効率で十分な注意を払って,ドロップインで置き換えられることを示す。
論文 参考訳(メタデータ) (Thu, 30 Oct 2025 16:59:43 GMT) - 「At its core lies Kimi Delta Attention (KDA), a hardware-efficient linear attention module that extends Gated DeltaNet [111] with a finer-grained gating mechanism. While GDN, similar to Mamba2 [16], employs a coarse head-wise forget gate, KDA introduces a channel-wise variant in which each feature dimension maintains an independent forgetting rate, akin to Gated Linear Attention (GLA) [114]. This fine-grained design enables more precise regulation of the finite-state RNN memory, unlocking the potential of RNN-style models within hybrid architectures.」をハイブリッド構成で活用。
- GitHub – MoonshotAI/Kimi-Linear
- Every Activation Boosted: Scaling General Reasoner to 1 Trillion Open Language Foundation [149.0]
Ling 2.0は、すべてのアクティベーションが推論能力を促進するという原則に基づいて構築された一連の推論指向の言語基盤である。 Ling 2.0は、経験的スケーリング法則によって導かれる、高い分散性、クロススケール一貫性、効率性を強調している。 シリーズには、Ling-mini-2.0、Ling-flash-2.0、Ling-1Tの3つの非思考モデルが含まれている。
論文 参考訳(メタデータ) (Sat, 25 Oct 2025 01:51:37 GMT) - 長いReasoningにフォーカスしたRing-1Tとはことなり、一般的な推論や指示に従う能力にフォーカス
- GitHub – inclusionAI/Ling-V2: Ling-V2 is a MoE LLM provided and open-sourced by InclusionAI.
- Scaling Latent Reasoning via Looped Language Models [109.6]
事前学習されたループ言語モデル(LoopLM)のファミリーであるOuroを提示し、オープンソース化する。 Ouro は (i) 潜時空間における反復計算, (ii) 学習深度割り当てのためのエントロピー規則化された目的, (iii) 7.7T トークンへのスケーリングによる事前学習段階への推論を構築する。
論文 参考訳(メタデータ) (Wed, 29 Oct 2025 17:45:42 GMT) - Looped Language Model (LoopLM) architectureによるモデル構築の報告。「we introduced Ouro, a family of Looped Language Models that demonstrate exceptional parameter efficiency by integrating iterative computation and adaptive depth directly into pre-training on 7.7T tokens. Our 1.4B and 2.6B models consistently match or exceed the performance of 4B and 8B standard transformers, showcasing a 2-3× efficiency gain.」と非常に効率が高い。
- Ouro: Looped Language Models
- Parallel Loop Transformer for Efficient Test-Time Computation Scaling [34.8]
大規模言語モデル(LLM)は強力だが、推論中に現実世界で使うには遅すぎるしコストもかかる。 ループ変換器は、複数の計算ステップで同じ重みを再利用することでパラメータを節約する。 ループが次々と実行され、各追加ループで推論遅延とメモリ要求が増大する。
論文 参考訳(メタデータ) (Tue, 28 Oct 2025 15:35:50 GMT) - こちらは並列のParallel Loop Transformer (PLT)
- Emu3.5: Native Multimodal Models are World Learners [65.9]
Emu3.5は大規模マルチモーダル世界モデルで、視覚と言語をまたいだ次の状態をネイティブに予測する。 Emu3.5は、視覚言語間のインターリーブデータのコーパスに基づいて、一貫した次トーケン予測目標を持つ、エンドツーエンドで事前訓練された。 それは、一貫した世界探索とオープンワールドの具体的操作を可能にする、一般化可能な世界モデリング能力を示す。
論文 参考訳(メタデータ) (Thu, 30 Oct 2025 15:11:16 GMT) - Emuシリーズ(Emu3: Next-Token Prediction is All You Need – arXiv最新論文の紹介)の最新版。「Emu3.5 further exhibits generalizable worldmodeling abilities encompassing world exploration and embodied manipulation, enabling controllable interaction, free-form navigation, and dynamic scene simulation across both real and imagined environments. We carefully evaluate these new capabilities and demonstrate clear superiority of Emu3.5, a single 32B unified model, over the closed-source Gemini 2.5 Flash Image [91].」とのこと。
- emu.world/pages/web/landingPage、GitHub – baaivision/Emu3.5: Native Multimodal Models are World Learners
Steering MoE LLMs via Expert (De)Activation
- Steering MoE LLMs via Expert (De)Activation [118.2]
LLM(Large Language Models)におけるMixture-of-Experts (MoE)は、各トークンを専用のFeed-Forward Networks (FFN)のサブセットを介してルーティングする。 我々は,行動関連の専門家を検知し,制御することで,MoEモデルをステアリングするフレームワークであるSteerMoEを提案する。
論文 参考訳(メタデータ) (Thu, 11 Sep 2025 17:55:09 GMT) - MoEを操作し望ましい(または望ましくない)動作に近づける手法の提案。ネガティブな方向性で「Critically, we are also exposing a novel dimension of “Alignment Faking” in LLMs (Greenblatt et al , 2024; Wang et al , 2024), where alignment is concentrated in a subset of experts, neglecting alternate routing paths that can catastrophically bypass alignment when triggered. We argue that, just as safety alignment must extend beyond the first few tokens (Qi et al , 2025), it must also go deeper than just a few expert pathways, ensuring robustness across the entire model routing topology.」はその通りだと思う。
- リポジトリはGitHub – adobe-research/SteerMoE: A framework for steering MoE models by detecting and controlling behavior-linked experts.
TiMoE: Time-Aware Mixture of Language Experts
- TiMoE: Time-Aware Mixture of Language Experts [30.8]
大規模言語モデル(LLM)は通常、Webの固定スナップショットに基づいてトレーニングされる。 我々は,2013-2024コーパスの2年スライスを分割し,TiMoEで組み合わせることで,GPTスタイルのエキスパートセットをスクラッチから事前学習することで,この問題に対処する。 推論時にTiMoEは、クエリタイムスタンプ後にトレーニングウィンドウが終了するすべての専門家をマスクし、残りのログ確率を共有スペースにマージする。
論文 参考訳(メタデータ) (Tue, 12 Aug 2025 10:36:36 GMT) - 「TiMoE demonstrates that partitioning pre-training data into strict time slices and blending the resulting GPT-2 experts through a causal, timestamp-aware router yields language models that stay chronologically grounded without a heavy accuracy penalty. By masking out any expert trained on data newer than the query year, TiMoE eliminates future-knowledge leakage while letting earlier specialists cooperate, cutting temporally inconsistent answers on the new 10 k-question TSQA benchmark by roughly 15%and delivering steadier accuracy across years.」というアプローチの時間情報の取り扱い。time-specific expertsを扱う面白いフレームワーク。とはいえパラメータ効率的にどうなんだろうと思わなくはない。
- リポジトリはhttps://github.com/epfml/TiMoEとのこと。
FlexOlmo: Open Language Models for Flexible Data Use
- FlexOlmo: Open Language Models for Flexible Data Use [184.9]
我々は、データ共有なしで分散トレーニングをサポートする新しい言語モデル(LM)であるFlexOlmoを紹介します。 FlexOlmoはエキスパートの混成アーキテクチャを採用しており、各専門家はクローズドデータセットで独立して訓練される。 我々は、公開データで訓練された一般専門家と、他のデータ所有者から独立した訓練を受けた専門家とを効果的に組み合わせることができることを示す。
論文 参考訳(メタデータ) (Wed, 09 Jul 2025 16:54:21 GMT) - 「Standard MoEs train all experts and the router jointly on all data. In contrast, FLEXOLMO trains experts independently by teaching them to coordinate (§3.3.1) and merges them at inference using a domain-informed router (§3.3.2).」と連合学習やMoEと聞いて思い浮かべるが現実的には難しいそれぞれの場所で構築されたAIが統合的に動作するフレームワークの提案と効果検証。
- 「Organizations in regulated industries require LMs that can leverage their closed datasets while maintaining strict data privacy and access controls. Healthcare institutions, financial firms, and other entities possess valuable domain-specific data but cannot share it externally due to HIPAA, GDPR [14, 15], data sovereignty laws [16], and intellectual property (IP) protections. These organizations need training paradigms that enable AI improvement on their sensitive data while ensuring such sensitive data never leaves certain environments and can be removed from the model after training, e g , when data usage rights expire. In such settings, modular training approaches, where individual experts are trained independently and asynchronously on locally maintained data, are essential.」はまさにその通りで非常に有用な技術に思える。
- プロジェクトサイトはIntroducing FlexOlmo: a new paradigm for language model training and data collaboration | Ai2、リポジトリはGitHub – allenai/FlexOlmo: Code and training scripts for FlexOlmo
Llama 4, Nemotron-H, Pangu Ultra, Kimi-VL, Kimi-VL-Thinking, Deep Coder
先週もLLM関連の話題は多かったが、Llama4の発表はその中でも大きなものだった(The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation)。MoE構成で高い性能を主張、第三者の検証ではいまいちという話も、量子化の影響(性能劣化)が大きいのではという話もあって、検証結果が出そろうのを待ちたいところ。
NVIDIAからは Mamba-TransformerハイブリッドなNemotron-Hが発表されている(Nemotron-H: A Family of Accurate, Efficient Hybrid Mamba-Transformer Models – NVIDIA ADLR)。 「Nemotron-H has been used as the backbone for Cosmos-Reason 1, a very strong VLM for physical AI.」というのにも注目。
HuaweiからはPangu Ultraの論文が出ているが、詳細なPDFは公開されていないよう。「To perform such large-scale training efficiently, we utilize 8,192 Ascend NPUs with a series of system optimizations. Evaluations on multiple diverse benchmarks indicate that Pangu Ultra significantly advances the state-of-the-art capabilities of dense LLMs such as Llama 405B and Mistral Large 2, and even achieves competitive results with DeepSeek-R1」という興味深い記載があり詳細が気になるところ。
Kimi-VL は強力なMLLMであり、また、Kimi-VL-ThinkingとLRMでもあるのが特徴的な公開モデル(moonshotai/Kimi-VL-A3B-Instruct · Hugging Face)。o3-miniレベルの性能を主張するDeepCoder: A Fully Open-Source 14B Coder at O3-mini Levelなどオープンなモデルも進化が速い。オープンなモデルを強化する方向もIntroducing Cogito Preview(Cogito v1 Preview – a deepcogito Collection)など様々な成果が出ていて、公開モデルの性能も向上が続く。
- Nemotron-H: A Family of Accurate and Efficient Hybrid Mamba-Transformer Models [164.5]
ネモトロン-Hは8Bと56B/47Bハイブリッド・マンバ・トランスフォーマーのファミリーである。 私たちは共通のTransformerモデルアーキテクチャにおけるほとんどの自己注意レイヤをMambaレイヤに置き換えます。 Nemotron-Hモデルは、他の同様のサイズのオープンソーストランスフォーマーモデルと比較して、精度が良いか低いかのどちらかを提供する。
論文 参考訳(メタデータ) (Fri, 04 Apr 2025 17:41:58 GMT) - 高速、高性能なMambaハイブリッドなLLM
- Pangu Ultra: Pushing the Limits of Dense Large Language Models on Ascend NPUs [123.3]
135億のパラメータと高密度トランスフォーマーモジュールを持つ大規模言語モデル(LLM)であるPangu Ultraについて述べる。 このような大規模トレーニングを効率的に行うためには,8,192個のAscend NPUと一連のシステム最適化を用いる。 我々の調査では、Ascend NPUは1000億以上のパラメータを持つ高密度モデルを効率的かつ効果的に訓練できることを示した。
論文 参考訳(メタデータ) (Thu, 10 Apr 2025 15:41:51 GMT) - ファーウェイのLLM。ファーウェイのアクセラレータを活用して構築しているとのことだが現状論文が参照できない状態。詳細が気になるところ。
- Kimi-VL Technical Report [88.1]
Kimi-VLは視覚言語モデル(VLM)であり、高度なマルチモーダル推論、長いコンテキスト理解、強力なエージェント能力を提供する。 汎用 VLM として、Kimi-VL はマルチターンエージェントタスク(OSWorld など)に優れ、旗艦モデルと一致する。 Kimi-VLをベースとして、Kim-VL-Thinkingという先進的なロングシンキングモデルを導入する。
論文 参考訳(メタデータ) (Thu, 10 Apr 2025 06:48:26 GMT) - エージェントタスクでも高い性能を持つマルチモーダルLLM。Thinkingバージョンはパラメータ数と比較して高い性能。
- リポジトリはGitHub – MoonshotAI/Kimi-VL: Kimi-VL: Mixture-of-Experts Vision-Language Model for Multimodal Reasoning, Long-Context Understanding, and Strong Agent Capabilities, moonshotai/Kimi-VL-A3B-Instruct · Hugging Face
Mixture of Hidden-Dimensions Transformer
- Mixture of Hidden-Dimensions Transformer [50.4]
隠れ次元の空間性について検討し、訓練されたトランスフォーマーがわずかなトークン次元しか利用していないことを観察する。 スパース条件付アクティベーションアーキテクチャであるMoHD(Mixture of Hidden Dimensions)を提案する。 50%のアクティベーションパラメータが減少し、3.7%のハイパフォーマンスを実現し、3倍のパラメータを一定のアクティベーションコストで拡張する。
論文 参考訳(メタデータ) (Sat, 07 Dec 2024 13:15:22 GMT) - 最近よく見るMoEっぽいがグローバルな構造に踏み込んでいるタイプの研究
- 「It achieves 1.7% higher performance with 50% fewer activation parameters and 3.7% higher performance with a 3× parameter expansion at constant activation cost.」とのこと
MH-MoE:Multi-Head Mixture-of-Experts
- MH-MoE:Multi-Head Mixture-of-Experts [119.5]
MH-MoE(Multi-Head Mixture-of-Experts)は,マルチヘッド機構を用いて, 異なる専門家内の様々な表現空間からの情報を集約し, 優れた性能を示す。 FLOPとパラメータパリティの両方をスパースミキサーモデルで維持するMH-MoEの新たな実装を提案する。
論文 参考訳(メタデータ) (Mon, 25 Nov 2024 09:05:36 GMT) - Fugu-MT 論文翻訳(概要): Multi-Head Mixture-of-Experts の実装の改善
- 「In this paper, we present a novel implementation of MH-MoE that maintains both FLOPs and parameter parity with sparse Mixture of Experts models.」
Hunyuan-Large
- Hunyuan-Large: An Open-Source MoE Model with 52 Billion Activated Parameters by Tencent [83.4]
Hunyuan-Largeは、オープンソースのTransformerベースのエキスパートモデルのミックスである。 我々は,Hunyuan-Largeの優れた性能を,様々なベンチマークで徹底的に評価する。 Hunyuan-Largeの主な実践は、以前の文献より大きい大規模合成データである。
論文 参考訳(メタデータ) (Tue, 05 Nov 2024 04:14:25 GMT) - 高性能かつモデルが公開されているタイプのLLM。389Bパラメータうち52BがアクティブなるMoEでLlama 3.1 70Bを超え、405Bと競合的と主張。比較的寛容なライセンスであるが「THIS LICENSE AGREEMENT DOES NOT APPLY IN THE EUROPEAN UNION AND IS EXPRESSLY LIMITED TO THE TERRITORY, AS DEFINED BELOW.」というのが特徴的。「This Agreement and any dispute arising out of or relating to it will be governed by the laws of the Hong Kong Special Administrative Region of the People’s Republic of China」との記載も。
- リポジトリはGitHub – Tencent/Tencent-Hunyuan-Large、モデルはtencent/Tencent-Hunyuan-Large · Hugging Face
TransAgent: Transfer Vision-Language Foundation Models with Heterogeneous Agent Collaboration
- TransAgent: Transfer Vision-Language Foundation Models with Heterogeneous Agent Collaboration [33.9]
視覚言語基礎モデル(CLIPなど)は、大規模な画像テキスト事前学習により、転送学習におけるその能力を示している。 本稿では,分離されたエージェントの知識を統一的に伝達する,汎用的で簡潔なTransAgentフレームワークを提案する。 われわれのTransAgentは、11の視覚的認識データセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (Wed, 16 Oct 2024 03:01:44 GMT) - エージェンティックなモデルの統合、「By adaptively integrating the external knowledge of agents from different modalities via MoA gating mechanism, TransAgent achieves state-of-the-art performance on 11 datasets under the low-shot scenarios.」とのこと。
- リポジトリはGitHub – markywg/transagent: [NeurIPS 2024] TransAgent: Transfer Vision-Language Foundation Models with Heterogeneous Agent Collaboration