Automated Graph Machine Learningのサーベイ

FS2K: 顔のスケッチ合成(FSS)問題のデータセットとベースライン

  • Deep Facial Synthesis: A New Challenge [76.0]
    まず,FS2Kという,2,104のイメージスケッチペアからなる高品質なFSSデータセットを提案する。 第2に, 古典的手法139点を調査し, 最大規模のFSSについて検討した。 第3に、FSGANという単純なFSSのベースラインを提示する。
    論文  参考訳(メタデータ)  参考訳(全文)  (Fri, 31 Dec 2021 13:19:21 GMT)
    • 2100以上のデータからなる顔のスケッチデータセット(性別等の属性付き)の紹介と広範囲な調査、ベースラインの提示。顔合成に関するサーベイとしても興味深い内容。

AI/機械学習の実用に関する調査

  • Machine Learning Application Development: Practitioners’ Insights [18.1]
    MLアプリケーション開発の課題とベストプラクティスを理解することを目的とした調査について報告する。 80人の実践者から得られた結果を17の発見にまとめ、MLアプリケーション開発の課題とベストプラクティスを概説する。 報告された課題が、MLベースのアプリケーションのエンジニアリングプロセスと品質を改善するために調査すべきトピックについて、研究コミュニティに知らせてくれることを期待しています。
    論文  参考訳(メタデータ)   (Fri, 31 Dec 2021 03:38:37 GMT)
    • AI/機械学習の実用を行っている人へのアンケート結果の報告。周りの人がどのようなことをやっているのかを知るために参考になる。
    • Findingsも(全部同意というわけではないが)納得のいく内容が多い。Finding 12の「roughly one-third of the practitioners write code from scratch for model implementation」はやや驚き。どこからがscratchなんだろう?「Practitioners also mentioned using their own custom auto-ML system for ML model training.」も納得感があって、私もGitHub – s-taka/fugumlを作っている。報告ではクラスバランスが重視されている印象があるが、個人的には不均衡データの取り扱いはドメインに強く依存するなーと思う。

NLPにおけるジェンダーバイアスのサーベイ

  • A Survey on Gender Bias in Natural Language Processing [22.9]
    自然言語処理における性別バイアスに関する304論文について調査する。 ジェンダーバイアスの検出と緩和に対するコントラストアプローチの比較を行った。 性別偏見の研究は、4つの中核的な限界に悩まされている。1)ジェンダーを流動性と連続性を無視した二変数変数として扱う。 2) 単言語で実施されている。 3) 倫理的考察を無視している。 4) 男女差の非常に限定的な定義と, 評価基準とパイプラインの欠如に根本的な欠陥がある。 
    論文  参考訳(メタデータ)   (Tue, 28 Dec 2021 14:54:18 GMT)
    • AIの社会実装において逃げてはいけないジェンダーバイアスに関するサーベイ。4つの問題が指摘されているが、その中でもジェンダー及びジェンダーバイアスの定義ができていないというのは非常に重要な指摘であると思う。

MISE(Multimodal Image Synthesis and Editing)のサーベイ

  • Multimodal Image Synthesis and Editing: A Survey [41.6]
    マルチモーダル画像合成と編集は 近年 ホットな研究テーマになっている。 明確な手がかりを提供する従来のビジュアルガイダンスとは異なり、マルチモーダルガイダンスは画像合成と編集において直感的で柔軟な手段を提供する。 本稿では、GAN(Generative Adversarial Networks)、GAN Inversion、Transformer、NeRFやDiffusionモデルなどを含む詳細なフレームワークを用いたマルチモーダル画像合成と編集手法について述べる。
    論文  参考訳(メタデータ)  参考訳(全文)  (Mon, 27 Dec 2021 10:00:16 GMT)

語彙モデルとTokenizeの歴史

  • Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP [22.8]
    単語と文字のハイブリッドなアプローチと,学習セグメンテーションに基づくサブワードベースのアプローチが提案され,評価されていることを示す。 すべてのアプリケーションに対して銀の弾丸が存在することはあり得ない。
    論文  参考訳(メタデータ)   (Mon, 20 Dec 2021 13:04:18 GMT)
    • 自然言語処理の基礎となるTokenizeの歴史が書かれたサーベイ(?)結論は銀の弾丸はないので応用領域ごとに考えるべきというものだが、歴史が非常に参考になる。
    • 特に日本語では自然言語処理には形態素解析が重要になることが多く、目的に応じて手法(アプローチ)が異なるのは納得感がある。

NLPモデルの頑健性の評価、改善に関するサーベイ

  • Measure and Improve Robustness in NLP Models: A Survey [23.5]
    堅牢性は視覚やNLPなどのアプリケーションで別々に研究されており、様々な定義、評価、緩和戦略が研究の複数のラインで行われている。 まず、ロバスト性の定義を複数結合し、その後、ロバスト性障害を特定し、モデルのロバスト性を評価する様々な作業ラインを統一します。 我々は、NLPモデルの堅牢性を効果的に改善する方法をより体系的な視点で、データ駆動型、モデル駆動型、インダクティブプライオリベースである緩和戦略を提案する。
    論文  参考訳(メタデータ)  参考訳(全文)  (Wed, 15 Dec 2021 18:02:04 GMT)
    • 社会実装で重要な自然言語処理モデル頑健性について評価方法や、改善方法をまとめたサーベイ。本文は8ページと短めだが簡潔にまとまっておりベンチマークなども参考になる。

A Framework for Fairness: Fair AIを実現するためのサーベイ

  • A Framework for Fairness: A Systematic Review of Existing Fair AI Solutions [4.6]
    公正性の研究の大部分は、機械学習の実践者がアルゴリズムを設計しながらバイアスを監査するために使用できるツールの開発に費やされている。 実際には、これらの公平性ソリューションの応用例が欠如している。 このレビューでは、定義されたアルゴリズムバイアス問題と提案された公平問題解決方法の詳細な概要について述べる。
    論文  参考訳(メタデータ)   (Fri, 10 Dec 2021 17:51:20 GMT)
    • アルゴリズムバイアスとFairness awareなAIを構築するためのソリューションのサーベイ。

効率的な顔認識のサーベイ

  • Detect Faces Efficiently: A Survey and Evaluations [13.1]
    顔認識、表情認識、顔追跡、頭部推定を含む多くの応用は、画像中の顔の位置と大きさの両方が知られていると仮定する。 ディープラーニング技術は、かなりの計算量の増加と共に、対面検出に驚くべきブレークスルーをもたらした。 本稿では, 代表的な深層学習手法を紹介し, 精度と効率性の観点から, 深く, 徹底的な分析を行う。
    論文  参考訳(メタデータ)  参考訳(全文)  (Fri, 3 Dec 2021 08:39:40 GMT)
    • Deep Learningの応用先としても有力な顔認識に関するサーベイ。主要なモデルを振り返るうえで非常に参考になる。

Metaverceと芸術のサーベイ

  • When Creators Meet the Metaverse: A Survey on Computational Arts [19.4]
    本論では, 仮想現実をブレンドした新しいアートワークについて, 計算芸術に関する包括的調査を行う。 メタバースサイバースペースの拡張された地平線における斬新な創造のいくつかの顕著なタイプが反映されている。 計算芸術の民主化,デジタルプライバシ,メタバースアーティストの安全,デジタルアートの所有権認識,技術的課題など,いくつかの研究課題を提案する。
    論文  参考訳(メタデータ)   (Fri, 26 Nov 2021 13:24:37 GMT)
    • 仮想現実とアートに関するサーベイ。読み物としても非常に面白く刺激的。