引用被引用関係(グラフ構造)を活用した情報抽出

  • CitationIE: Leveraging the Citation Graph for Scientific Information Extraction [89.3]
    科学的文書から重要な情報を自動抽出することは、科学者がより効率的に働き、科学的進歩のペースを加速するのに役立つ可能性がある。 引用論文と引用論文の参照リンクの引用グラフを使用する。 最先端技術に対するエンド・ツー・エンドの情報抽出の大幅な改善を観察する。
    論文  参考訳(メタデータ)   (Thu, 3 Jun 2021 03:00:12 GMT)

グラフ構造データ処理のサーベイ

  • Graph Learning: A Survey [38.2]
    本稿では,グラフ学習の現状について概観する。 グラフ信号処理,行列分解,ランダムウォーク,ディープラーニングなど,既存のグラフ学習手法の4つのカテゴリに特に注目されている。 テキスト,画像,科学,知識グラフ,最適化といった分野におけるグラフ学習アプリケーションについて検討する。
    論文  参考訳(メタデータ)   (Mon, 3 May 2021 09:06:01 GMT)
    • グラフ構造データに対するサーベイ論文。多岐にわたるアルゴリズムが考案されていることがわかる。node2vec, struc2vec, graph2vec, hin2vec, metapath2vecと2vec系だけでもいろいろある。

効率的なGCN、ビームサーチを超えるサーチ、感情を考慮した翻訳

  • Towards Efficient Graph Convolutional Networks for Point Cloud Handling [181.6]
    ポイントクラウド上で学習するためのグラフ畳み込みネットワーク(GCN)の計算効率の向上を目指す。 1) 3次元表現の局所的幾何学的構造情報はKNN探索による近傍特徴の収集に依存するGCN全体にわたって円滑に伝播する。2)グラフ特徴集合の順序をシャッフルし、MLPが等価あるいは類似の複合演算に導く。これらの結果に基づき、GCNの計算手順を最適化する。最適化されたネットワークは計算の複雑さを減らし、メモリ消費を減らし、予測速度を加速し、ポイントクラウド上での学習の精度を同等に保った。
    論文  参考訳(メタデータ)  参考訳(全文)  (Mon, 12 Apr 2021 17:59:16 GMT)
    • GCNの高速化の話。結果はpoint cloudの性質による(?)
  • Machine Translation Decoding beyond Beam Search [43.3]
    ビームサーチは自動回帰機械翻訳モデルの復号化手法である。ビームサーチは自動回帰機械翻訳モデルの復号化手法である。 BLEUの観点で一貫した改善をもたらすが、それは高いモデル確率で出力を見つけることだけに関係している。 我々の目標は、ビームサーチがより強力な計量駆動サーチ技術に置き換えられるかどうかを確かめることである。 モンテカルロ木探索(mcts)に基づく手法を導入し,その競合性を示す。
    論文  参考訳(メタデータ)   (Mon, 12 Apr 2021 10:28:17 GMT)
    • 翻訳タスク、文章生成タスクなどでよく用いられるビームサーチを改善できるかを検討した論文。DeepMindらしく(?)広範な比較があり参考になる。BLEUのみをメトリクスにしていないのも今風。
  • Sentiment-based Candidate Selection for NMT [2.6]
    本稿では,機械翻訳(mt)候補選択プロセスに自動感情スコアを組み込むデコーダ側手法を提案する。 我々は、英語とスペイン語の感情分類器を訓練し、ビームサーチによるベースラインMTモデルによって生成されたn-best候補を用いて、原文の感情スコアと翻訳の絶対差を最小化する候補を選択する。 人間の評価結果から口語的で感情的な原文をより正確に翻訳することができた。
    論文  参考訳(メタデータ)   (Sat, 10 Apr 2021 19:01:52 GMT)
    • 感情分類器を併用した機械翻訳の論文。このようなアプローチは面白い。

羅生門効果、アニメ補間、グラフデータサンプリング

  • Revisiting Rashomon: A Comment on “The Two Cultures” [95.8]
    Breiman氏は「Rashomon Effect」と呼び、予測精度基準を等しく満たす多くのモデルが存在するが、情報を実質的に異なる方法で処理する状況について説明した。 この現象は、データに適合するモデルに基づいて結論を導き出すか、意思決定を自動化することを困難にします。 私は、この問題の意義を探求する機械学習における最近の研究と関係しています。
    論文  参考訳(メタデータ)   (Mon, 5 Apr 2021 20:51:58 GMT)
    • 機械学習における羅生門効果の話。ここでは「同じ最小エラー率を持つ関数のクラスに、多種多様な記述(例f(x))が存在」と定義。Underspecificationとも関連する重要な問題。現実では避けて通れない。
  • Deep Animation Video Interpolation in the Wild [115.2]
    本研究では,アニメーション・ビデオ・コードに関する問題を初めて形式的に定義・検討する。 効果的なフレームワークであるAnimeInterpを2つの専用モジュールで粗密に提案します。 特にAnimeInterpは、現実のアニメーションシナリオに良好な知覚品質と堅牢性を示します。
    論文  参考訳(メタデータ)   (Tue, 6 Apr 2021 13:26:49 GMT)
    • アニメーションの映像補間。テクスチャ情報が使用しにくい、不連続かつ変異が大きいなど通常のビデオとは異なる特性に対応。
  • Graph Sampling Based Deep Metric Learning for Generalizable Person Re-Identification [114.6]
    我々は、最も一般的なランダムサンプリング手法である有名なpkサンプリングは、深層メトリック学習にとって有益で効率的ではないと主張する。 大規模計量学習のためのグラフサンプリング(GS)と呼ばれる効率的なミニバッチサンプリング手法を提案する。
    論文  参考訳(メタデータ)   (Tue, 6 Apr 2021 05:26:26 GMT)
    • アブストラクトの通り、サンプリング手法を工夫することによる人物再同定タスクでの精度向上。