- GPT Can Solve Mathematical Problems Without a Calculator [24.1]
大規模言語モデルでは,データ漏洩を伴わずに,ほぼ100%の精度で算術演算を正確に行うことができることを示す。 また、GLM-10Bから微調整した我々のMathGLMは、5000サンプルの中国の数学問題テストセットにおいて、GPT-4と同様の性能を発揮することを示した。
論文 参考訳(メタデータ) (Wed, 6 Sep 2023 06:18:16 GMT) - LLMで算術計算(多桁数、小数点数、分数)は可能という論文。妥当なデータセットが構築できればLLMでの算術計算は可能なのでは?と直感的にも思うが、可能という結論になっている。
タグ: 数学
数学的推論とDeep Learningのサーベイ
- A Survey of Deep Learning for Mathematical Reasoning [71.9]
我々は過去10年間の数学的推論とディープラーニングの交差点における重要なタスク、データセット、方法についてレビューする。 大規模ニューラルネットワークモデルの最近の進歩は、新しいベンチマークと、数学的推論にディープラーニングを使用する機会を開放している。
論文 参考訳(メタデータ) (Tue, 20 Dec 2022 18:46:16 GMT) - 研究が盛んでぼちぼちできるようになりつつある数学的推論のサーベイ。
- リポジトリはGitHub – lupantech/dl4math: Reading list for research topics in mathematical reasoning and artificial intelligence
UniGeo: Unifying Geometry Logical Reasoning via Reformulating Mathematical Expression
- UniGeo: Unifying Geometry Logical Reasoning via Reformulating Mathematical Expression [127.7]
計算と証明の2つの主要な幾何学問題は、通常2つの特定のタスクとして扱われる。 我々は4,998の計算問題と9,543の証明問題を含むUniGeoという大規模統一幾何問題ベンチマークを構築した。 また,複数タスクの幾何変換フレームワークであるGeoformerを提案し,計算と証明を同時に行う。
論文 参考訳(メタデータ) (Tue, 6 Dec 2022 04:37:51 GMT) - 数学問題のベンチマークとそれらを解く手法の提案
- リポジトリはchen-judge/UniGeo (github.com)
LILA(Lilavatiより?)
- Lila: A Unified Benchmark for Mathematical Reasoning [60.0]
LILAは、23の多様なタスクと4次元からなる統一的な数学的推論ベンチマークである。 我々は,Pythonプログラムの形式でタスク命令とソリューションを収集することにより,20のデータセットベンチマークを拡張してベンチマークを構築した。 LILAで訓練された汎用数学的推論モデルであるBHASKARAを紹介する。
論文 参考訳(メタデータ) (Mon, 31 Oct 2022 17:41:26 GMT)- 数学的な推論のためのデータセット。23タスク44データセットと大規模。GPT-Neo-2.7Bをfinetuneしたモデル、GPT-3/Codexのfew shotで検証されておりCodexが比較的高性能。ただ、スコアは高くない。
- プロジェクトサイトはallenai/Lila: A unified benchmark for math reasoning (github.com)。モデルはallenai/bhaskara · Hugging Face
- 名称はバースカラ2世 – Wikipediaの著書からのよう。
TabMWP: Tabular Math Word Problem
- Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning [150.2]
数学的な推論を必要とする38,431のグレードレベルの問題を含む新しいデータセットであるTabular Math Word Problems (TabMWP)を提案する。 我々は,GPT-3モデルを含む,TabMWP上での事前学習モデルの評価を行った。 本稿では、ポリシー勾配を利用して、少量のトレーニングデータからコンテキスト内サンプルを選択する新しいアプローチ、PromptPGを提案する。
論文 参考訳(メタデータ) (Thu, 29 Sep 2022 08:01:04 GMT)- 表形式のデータに対して数学的な推論を必要とするデータセットの提案。38Kと規模も大きい。GPT-3+強化学習により一般的な手法よりも高い性能を達成とのこと。
競技プログラミングレベルのコードを生成するAlphaCodeと数学オリンピックの問題を解くAI
コード自動生成や数学問題取り扱いなど難しい問題に対応できるAIが増えている。両方とも未来を感じるとともに怖さも感じる結果。
- DeepMindが競技プログラミングを解けるレベルの自動コード生成が可能なAlphaCodeを発表
- OpenAIは数学オリンピックの問題を解く(大幅に性能向上させた)AIを発表