SORAとGemini-1.5

先週話題となったニュースにテキストからのビデオ生成モデルであるOpenAIのSORA、極めて長いテキストを扱えるGoogleのGemini 1.5がある。両発表とも技術が一段進化した感がある。

Reka(Reka Flash: An Efficient and Capable Multimodal Language Model – Reka AI)のようなチャレンジャーも出てきていてニュースが多い。

  • Gemini 1.5: Unlocking multimodalunderstanding across millions of tokens ofcontext
    Gemini 1.5 Proは、きめ細かい情報をリコールして推論できる計算効率の高いマルチモーダル混合モデルである。モダリティ間の長いコンテキスト検索タスクのほぼ完璧なリコールを実現する。Gemini 1.0 Ultraの最先端のパフォーマンスを、幅広いベンチマークで比較または上回る。
  • 長文を扱える能力が高くTF-IDF での検索+re rankを行うパイプライン構成をとった場合を大きく超える性能。そして、旧Twitterでも紹介されていた「With only instructional materials (500 pages of linguistic documentation, a dictionary, and ≈ 400 parallel sentences) all provided in context, Gemini 1.5 Pro is capable of learning to translate from English to Kalamang, a language spoken by fewer than 200 speakers in western New Guinea in the east of Indonesian Papua2, and therefore almost no online presence.」が衝撃的。
  • gemini_v1_5_report.pdf (storage.googleapis.com)

ReadAgent 

  • A Human-Inspired Reading Agent with Gist Memory of Very Long Contexts [38.3]
    本実験では,有効文脈長を最大20倍に向上させるエージェントシステムであるReadAgentを提案する。 人間が長い文書を対話的に読む方法に触発され、簡単なプロンプトシステムとしてReadAgentを実装した。 本稿では,検索手法を用いてベースラインに対するReadAgentの評価を行い,元の長コンテキストを用いて,gistメモリを用いて評価する。
    論文  参考訳(メタデータ)   (Thu, 15 Feb 2024 05:40:21 GMT)
  • 人が長文を読むように一定チャンクごとに要点を保持するGistメモリを使用する方法を提案。ベンチマークで効果を確認とのこと。(BM25って結構優秀だなと別のところも気になった。)
  • リポジトリはA Human-Inspired Reading Agent with Gist Memory of Very Long Contexts (read-agent.github.io)

Knowledge Fusion of Large Language Models

  • Knowledge Fusion of Large Language Models [73.3]
    本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。 我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。 この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
    論文  参考訳(メタデータ)   (Mon, 22 Jan 2024 17:16:37 GMT)
  • リポジトリはfanqiwan/FuseLLM: ICLR’2024: Knowledge Fusion of Large Language Models (github.com)

History, Development, and Principles of Large Language Models-An Introductory Survey

  • History, Development, and Principles of Large Language Models-An Introductory Survey [48.3]
    自然言語処理(NLP)の基盤となる言語モデル 数十年にわたる広範な研究を経て、言語モデリングは、初期統計言語モデル(SLM)から、大規模言語モデル(LLM)の現代的景観へと進歩してきた。
    論文  参考訳(メタデータ)   (Sat, 10 Feb 2024 01:18:15 GMT)
  • 言語モデルの歴史を振り返るサーベイ
  • 歴史を振り返るにはよい資料でありつつ、それは言語モデルなのか?というつっこみがはいりそうな話題もある(LLMまでの歴史であれば特に問題はないのかな)

Data Engineering for Scaling Language Models to 128K Context

  • Data Engineering for Scaling Language Models to 128K Context [98.4]
    本研究では,言語モデルの文脈長を128Kまで拡張するための継続事前学習法について検討する。 長いコンテキストモデリング、特にthe ability to use information at any input locations は、主に大規模事前トレーニングによって既に獲得されている機能であり、この能力は、適切なデータ混合上での軽量な連続的事前トレーニングを通じて、トレーニング中(例えば、4kから128k)において、かなり長いコンテキストに拡張できると仮定する。 我々のレシピは強力なオープンソース長文モデルより優れており、GPT-4 128Kのようなフロンティアモデルとのギャップを埋めている。
    論文  参考訳(メタデータ)   (Thu, 15 Feb 2024 18:19:16 GMT)
  • 長文対応のためのレシピ。「the ability to utilize information at arbitrary locations within the 128K input is already mostly acquired by large-scale pretraining, even for models pretrained on substantially shorter 4K context.」というのは興味深い。
  • リポジトリはFranxYao/Long-Context-Data-Engineering: Implementation of paper Data Engineering for Scaling Language Models to 128K Context (github.com)

In-Context Principle Learning from Mistakes

  • In-Context Principle Learning from Mistakes [75.7]
    Incontext Learning(ICL)は、いくつかの入力出力例から学習することで、下流タスクにLLMを適用する標準的な方法である。 我々はこのパラダイムを再考し、数少ないインプット・アウトプットの例からより多くを学ぶ。
    論文  参考訳(メタデータ)   (Thu, 8 Feb 2024 04:42:29 GMT)
  • ICLを改善するため、不正解な事例を正しく修正させ原理を説明させるプロセスを混ぜる手法Learning Principles (LEAP)を提案。効果あったとのこと。
  • 改善するか否かはモデルにも依存している?っぽい結果。

Understanding the planning of LLM agents: A survey

  • Understanding the planning of LLM agents: A survey [98.8]
    本調査では, LLMをベースとしたエージェント計画の体系的考察を行い, 計画能力の向上を目的とした最近の成果について報告する。 各方向について総合的な分析を行い、研究分野におけるさらなる課題について論じる。
    論文  参考訳(メタデータ)   (Mon, 5 Feb 2024 04:25:24 GMT)
  • 最近よく見るLLMを利用した自律エージェントのうち計画に関するサーベイ。さらにTask Decomposition, Plan Selection, External Module, Reflection, Memoryに細分化して整理している。実質7ページとよくまとまっているサーベイ。

Tabular Data: Is Attention All You Need?

  • Tabular Data: Is Attention All You Need? [23.8]
    本稿では、ニューラルネットワークと、構造データ上の勾配ブースト決定木を比較した大規模な実証的研究を紹介する。 これまでの研究とは対照的に、ニューラルネットワークは決定木と競合することを示している。
    論文  参考訳(メタデータ)   (Tue, 6 Feb 2024 12:59:02 GMT)
  • テーブルデータのおけるNN系手法、ツリー系手法の比較。一般的にテーブルデータではツリー系手法の強さが目立つが、そうでもないとの報告。Transformer系手法は十分な性能を出せていないのでは?とのこと
  • 平均的にはResNeXtが優秀という意外な(?)結果、スタッキングでどうなるかも興味がある。

Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs

  • Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [87.0]
    大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。 我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。 認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
    論文  参考訳(メタデータ)   (Mon, 29 Jan 2024 06:25:00 GMT)
  • LLMの推論で課題となるKVキャッシュの圧縮方法の提案。タスクによっても異なるが50%のメモリ圧縮は可能そうに見える。

Multi-Lingual Text Embeddings

マルチリンガルなテキストの埋め込みについて2つ報告が出ていた。1つ目は高性能と話題のE5、もう1つはBAAIのモデルでベンチマーク上はE5以上の性能のように見える。いずれもオープンなライセンスのようで使いやすそう。

  • Multilingual E5 Text Embeddings: A Technical Report [63.5]
    異なるサイズの3つの埋め込みモデルを提供し、推論効率と埋め込み品質のバランスを提供する。 そこで我々は,新しい命令調整型埋め込みモデルを導入し,その性能は類似サイズの最先端の英語のみのモデルと同等である。
    論文  参考訳(メタデータ)   (Thu, 8 Feb 2024 13:47:50 GMT)
  • 高性能と話題でOpenAIの埋め込みモデルの別の選択肢としても有名な手法のテクニカルレポート
  • リポジトリはunilm/e5 at master · microsoft/unilm (github.com)、モデルはintfloat/multilingual-e5-base · Hugging Faceなど
  • BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation [28.2]
    本稿では,M3-Embeddingと呼ばれる新しい埋め込みモデルを提案する。 100以上の作業言語をサポートすることができるため、多言語および多言語検索タスクにおける最先端のパフォーマンスが新たに向上する。 M3-Embeddingは、短い文から最大8192トークンの長いドキュメントまで、さまざまな粒度の入力を処理することができる。
    論文  参考訳(メタデータ)   (Mon, 5 Feb 2024 17:26:49 GMT)
  • BAAIによる埋め込みモデル。E5より性能が高いと主張。
  • リポジトリはFlagOpen/FlagEmbedding: Dense Retrieval and Retrieval-augmented LLMs (github.com)モデルはBAAI/bge-m3 · Hugging Face