コンテンツへスキップ
- Not All Models Are Equal: Predicting Model Transferability in a Self-challenging Fisher Space [51.6]
本稿では、トレーニング済みのディープニューラルネットワークのランク付けと、下流タスクにおける最も転送可能なニューラルネットワークのスクリーニングの問題に対処する。 Self-challenging Fisher Discriminant Analysis (SFDA)と呼ばれる新しい転送可能性指標を提案する。
論文 参考訳(メタデータ) (Thu, 7 Jul 2022 01:33:25 GMT)
- Causal Machine Learning: A Survey and Open Problems [33.8]
Causal Machine Learning (CausalML)は、データ生成過程を構造因果モデル(Structure causal model, SCM)として定式化する機械学習手法の略称である。 1) 因果関係の学習, (2) 因果関係の生成モデル, (3) 因果関係の説明, (4) 因果関係の公正性,(5) 因果関係の強化学習。
論文 参考訳(メタデータ) (Thu, 30 Jun 2022 17:59:15 GMT)- CausalMLのサーベイ。非常に詳しくサーベイというより教科書的な内容。
- このレベルのものがCC BYで読めてしまうのはすごいと思う。