転送学習におけるソースデータセットの役割

  • A Data-Based Perspective on Transfer Learning [76.3]
    転送学習におけるソースデータセットの合成の役割について,より詳しく検討する。 我々のフレームワークは、転送学習の脆さをピンポインティングするなど、新しい機能を生み出します。
    論文  参考訳(メタデータ)   (Tue, 12 Jul 2022 17:58:28 GMT)
    • 事前学習用データから不要なものを取り除くことで最終性能が上がること、および、そのフレームワークの提案
      • 頑健性の変化についても知りたいところ。。
    • リポジトリはGitHub – MadryLab/data-transfer

OmniCity: Omnipotent City マルチレベル・マルチビューデータセット

  • OmniCity: Omnipotent City Understanding with Multi-level and Multi-view Images [72.4]
    オムニシティ(OmniCity)は、マルチレベル・マルチビュー画像から全能都市理解のための新しいデータセットである。 データセットには100万画素以上の注釈付き画像が含まれており、ニューヨーク市の25万画素のジオロケーションから順に収集されている。 新たなOmniCityデータセットでは,フットプリント抽出や高さ推定,平面/インスタンス/きめ細かなセグメンテーションなど,さまざまなタスクのベンチマークが提供されている。
    論文  参考訳(メタデータ)   (Mon, 1 Aug 2022 15:19:25 GMT)
    • 都市理解のためのデータセット。衛星画像だけでなくアノテーション付きのストリートパノラマ画像を含む。
    • プロジェクトサイトはOmniCity (city-super.github.io)