FunQA, Movie101

  • FunQA: Towards Surprising Video Comprehension [34.3]
    本稿では,楽しみビデオに基づく動画推論の深度評価と深度向上を目的としたデータセットFunQAを紹介する。 FunQAはHumorQA、CreativeQA、MagicQAの3種類の驚くべきビデオをカバーしている。 各サブセットに対して、直感的正当性、詳細な映像記述、反直感性に関する推論におけるモデルの能力を評価するために設計された厳密なQAタスクを確立する。 FunQAベンチマークは4.3Kのビデオクリップから派生した312Kの無料テキストQAペアで構成され、合計24時間に及ぶ。
    論文  参考訳(メタデータ)   (Mon, 26 Jun 2023 17:59:55 GMT)
  • ビデオへのQAデータセット。QAテキスト自体は問題ないと思うが、ビデオ部分は著作権的に大丈夫なんだろうか?(不明点が多いのでリポジトリへのリンクは貼っていない)
  • Movie101: A New Movie Understanding Benchmark [47.2]
    大規模な中国の映画ベンチマーク「Movie101」を構築した。 映画ナレーション評価のためのMNScore(Movie Narration Score)と呼ばれる新しい指標を提案する。 両タスクにおいて,提案手法は外部知識をうまく活用し,慎重に設計したベースラインよりも優れた性能を発揮する。
    論文  参考訳(メタデータ)   (Tue, 27 Jun 2023 11:42:44 GMT)
  • こちらはナレーション作成のタスクを対象とした映画のデータセット
  • 同じく著作権的な疑問点があるためリンクは貼っていない

この手のタスクは重要であり今後有望な分野なのだろうと思うが、既存の映像を使うのはリスクが高い気がする。研究用に頑張って映像から作るしかないのではないかと思わなくはない。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です