コンテンツへスキップ
- In-Context Principle Learning from Mistakes [75.7]
Incontext Learning(ICL)は、いくつかの入力出力例から学習することで、下流タスクにLLMを適用する標準的な方法である。 我々はこのパラダイムを再考し、数少ないインプット・アウトプットの例からより多くを学ぶ。
論文 参考訳(メタデータ) (Thu, 8 Feb 2024 04:42:29 GMT)
- ICLを改善するため、不正解な事例を正しく修正させ原理を説明させるプロセスを混ぜる手法Learning Principles (LEAP)を提案。効果あったとのこと。
- 改善するか否かはモデルにも依存している?っぽい結果。
- Understanding the planning of LLM agents: A survey [98.8]
本調査では, LLMをベースとしたエージェント計画の体系的考察を行い, 計画能力の向上を目的とした最近の成果について報告する。 各方向について総合的な分析を行い、研究分野におけるさらなる課題について論じる。
論文 参考訳(メタデータ) (Mon, 5 Feb 2024 04:25:24 GMT)
- 最近よく見るLLMを利用した自律エージェントのうち計画に関するサーベイ。さらにTask Decomposition, Plan Selection, External Module, Reflection, Memoryに細分化して整理している。実質7ページとよくまとまっているサーベイ。