TL;DR Progress: Multi-faceted Literature Exploration in Text Summarization

  • TL;DR Progress: Multi-faceted Literature Exploration in Text Summarization [37.9]
    本稿では,ニューラルテキスト要約に関する文献を探索する新たなツールであるTL;DR Progressについて述べる。 テキスト要約アプローチのための包括的なアノテーションスキームに基づいて、514の論文を整理する。
    論文  参考訳(メタデータ)   (Sat, 10 Feb 2024 09:16:56 GMT)
  • 要約関連の論文まとめサイトの提供。動作しているWEBシステムであり分類のやり方など実践的。
  • プロジェクトサイトはTLDR Progress (tldr-progress.de)

Large Language Models: A Survey

  • Large Language Models: A Survey [69.7]
    大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。 LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
    論文  参考訳(メタデータ)   (Fri, 9 Feb 2024 05:37:09 GMT)
  • LLMのサーベイ。この分野のサーベイは多いが整理軸が様々で面白い。

PreAct: Predicting Future in ReAct Enhances Agent’s Planning Ability

  • PreAct: Predicting Future in ReAct Enhances Agent’s Planning Ability [24.2]
    これは$textbfpre$dictionと$textbfrea$soningと$textbfact$ionを統合したエージェントフレームワークです。 実験の結果,PreActは複雑なタスクを遂行する上でReActのアプローチよりも優れており,Reflexion法と組み合わせることでPreActを併用できることがわかった。
    論文  参考訳(メタデータ)   (Sun, 18 Feb 2024 10:15:38 GMT)
  • 名前の通りReActの改善提案、 予測を作成し実績の違いから計画を修正させる、ようにActionとObservationにPredictを追加。ベンチマークで効果を確認とのこと。
  • リポジトリはFu-Dayuan/PreAct (github.com)