コンテンツへスキップ
- CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [87.2]
CodeXEmbedは400Mから7Bパラメータの大規模なコード埋め込みモデルのファミリーである。 我々の新しいトレーニングパイプラインは、複数のプログラミング言語を統合し、様々なコード関連タスクを共通の検索フレームワークに変換する。 私たちの7Bモデルは、コード検索において新しい最先端(SOTA)を設定し、以前の主要なモデルであるVoyage-CodeをCoIRベンチマークで20%以上上回っています。
論文 参考訳(メタデータ) (Tue, 19 Nov 2024 16:54:45 GMT)
- Code RAGなどで重要になるが難しいタスクであるEmbeddingモデルの提案、「Our 7B model sets a new state-ofthe-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark.」とのこと。2Bのベースモデルはgemma-2-2b-it、7BだとMistral-7B-Instruct-v0.3などベースは様々。
- 現状モデルは公開されていないっぽいが、「By bridging the gap between text and code retrieval domains and releasing our models to the community, we aim to promote further research and innovation in developer tools and programming language understanding.」のと記載がある。