Gemini-Exp-1114, Alpha Fold 3, Frontier Math

先週の大きなニュースは業界標準になりつつあるhttps://lmarena.ai/?leaderboardで、Geminiの最新バージョン(試験運用版モデル  |  Gemini API  |  Google AI for Developers)が一位をとったこと、Alpha Fold 3が公開されたこと(AlphaFold – Google DeepMindGitHub – google-deepmind/alphafold3: AlphaFold 3 inference pipeline.)だったと思う。やはり、Google, DeepMindは凄い。

そのほか。極めて難しい数学的問題を集めたFrontierMathベンチマークの登場も興味深かった。もはや人でも相当の専門家以外は扱えない問題になっているがこれらをLeakなく解くモデルが現れるのはいつになるのだろうか。(意外と近い将来な気もしていて期待と不安がある)

  • FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in AI [2.1]
    FrontierMath(フロンティアマス、フロンティアマス、FrontierMath)は、数学者が考案し検証した何百もの数学問題のベンチマークである。 現在の最先端のAIモデルは、問題の2%未満を解決し、AI能力と数学的コミュニティの長所との間に大きなギャップが浮かび上がっている。 AIシステムが専門家レベルの数学的能力に向かって進むにつれ、FrontierMathは彼らの進歩を定量化する厳格なテストベッドを提供する。
    論文  参考訳(メタデータ)   (Thu, 14 Nov 2024 16:26:03 GMT)
  • 「Current state-of-the-art AI models solve under 2% of problems」という極めてチャレンジングな問題。

SPARTAN: SPARse TrANsformer World model

  • SPARTAN: A Sparse Transformer Learning Local Causation [63.3]
    因果構造は、環境の変化に柔軟に適応する世界モデルにおいて中心的な役割を果たす。 本研究では,SPARse TrANsformer World Model(SPARTAN)を提案する。 オブジェクト指向トークン間の注意パターンに空間規則を適用することで、SPARTANは、将来のオブジェクト状態を正確に予測するスパース局所因果モデルを特定する。
    論文  参考訳(メタデータ)   (Mon, 11 Nov 2024 11:42:48 GMT)
  • 「Conceptually, we argue that in order to perform efficient adaptation, world models should be structured to reflect the underlying sparse causal structure of the observed dynamics, and that these structures should be local.」のもと、「we propose SPARTAN, a structured world model that jointly performs dynamics model learning and causal discovery.」とのこと。
  • Language Models as Causal Effect Generators [44.8]
    制御可能な因果構造を持つ大規模言語モデル(LLM)に基づくデータ生成のためのフレームワークを提案する。 我々は、任意の言語モデルと有向非巡回グラフ(DAG)をシーケンス駆動構造因果モデル(SD-SCM)に変換する手順を定義する。
    論文  参考訳(メタデータ)   (Tue, 12 Nov 2024 18:50:35 GMT)
  • こちらはLLM+DAGでsequence-driven structural causal modelを作るアプローチ

因果グラフ+LLMという話はとても興味深い。

Tree-of-Table: Unleashing the Power of LLMs for Enhanced Large-Scale Table Understanding 

  • Tree-of-Table: Unleashing the Power of LLMs for Enhanced Large-Scale Table Understanding [42.8]
    トレー・オブ・タブル(Tree-of-Table)は、LLMが大規模で複雑なテーブル上での推論能力を高めるために設計された新しいアプローチである。 Tree-of-Tableは優れた性能を持つ新しいベンチマークをセットし、大規模テーブル推論における顕著な効率性と一般化能力を示す。
    論文  参考訳(メタデータ)   (Wed, 13 Nov 2024 11:02:04 GMT)
  • 大規模なテーブルデータを推論するために木構造を用いるアプローチの提案
  • 「Starting with a large-scale input table, the process selectively condenses the data, emphasizing task-relevant information. Subsequently, the decomposed elements are methodically reorganized into a Table-Tree, a hierarchical structure designed to streamline and guide the subsequent reasoning process.」ということがプロンプトベースで可能なのも凄いなと思う。効果はありそう。

WorkflowLLM

  • WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models [105.5]
    ワークフローオーケストレーションにおける大規模言語モデルの能力を高めるための,データ中心のフレームワークであるLLMを提案する。 最初は106,763のサンプルで大規模な微調整Benchを構築し、28のカテゴリにわたる83のアプリケーションから1,503のAPIをカバーしている。 LlamaLlamaは複雑なAPIをオーケストレーションする能力を示しながら、優れた一般化性能を実現している。
    論文  参考訳(メタデータ)   (Fri, 08 Nov 2024 09:58:02 GMT)
  • エージェント開発において重要となるワークフロー生成に関するベンチマークの提案とLLMの構築。
  • (1) Data Collection、(2) Query Expansion、(3) Workflow Generation、合成データを用いたWorkflowBenchの作成、fine-tuneによる WorkflowLlamaの構築と合成データを併用する一般的な手順ではあるが、GPT-4o w/ICLを完全にoutperformしているのが興味深い。
  • リポジトリはGitHub – OpenBMB/WorkflowLLM