コンテンツへスキップ
- AutoKaggle: A Multi-Agent Framework for Autonomous Data Science Competitions [47.7]
AutoKaggleは、コード実行と単体テストを組み合わせた反復的な開発プロセスを実装し、コードの正しさとロジックの整合性を保証する。 データクリーニング、特徴工学、モデリングのための検証済み機能を含む汎用データサイエンスツールキットは、このソリューションの基礎を形成します。 AutoKaggleは、一般的なデータサイエンスパイプラインにおけるバリデーションレート0.85と総合スコア0.82を達成する。
論文 参考訳(メタデータ) (Sun, 27 Oct 2024 12:44:25 GMT)
- Kaggleのようなデータ分析の自動化。対象としているタスク(分析フェーズ)は「background understanding, preliminary exploratory data analysis, data cleaning (DC), in-depth exploratory data analysis, feature engineering (FE), and model building, validation, and prediction (MBVP).」で通常のAutoMLより広い、対象データはテーブルデータのよう。
- 「As our analysis relies on GPT-4o, which is trained on data available until October 2023, it includes most of the Classic Kaggle competitions.To evaluate the generalization capabilities of AutoKaggle, we therefore focus on competitions initiated after 2024.」とLeakには気を使っているとはいえ、「Evaluation results demonstrate that AutoKaggle achieves a validation submission rate of 0.85 and a comprehensive score of 0.82 in typical data science pipelines, fully proving its effectiveness and practicality in handling complex data science tasks.」という言いきりは凄い。もっとも、今のLLMの性能からして適切なパイプラインを組めば解けそうな問題であるという感覚はある。
- リポジトリはGitHub – multimodal-art-projection/AutoKaggle
- Survey of User Interface Design and Interaction Techniques in Generative AI Applications [79.6]
我々は,デザイナやディベロッパの参照として使用できる,さまざまなユーザインタラクションパターンのコンペレーションを作ることを目指している。 また、生成AIアプリケーションの設計についてもっと学ぼうとする人たちの参入障壁を低くしようと努力しています。
論文 参考訳(メタデータ) (Mon, 28 Oct 2024 23:10:06 GMT)
- 生成AIを使うアプリケーションのUIについてまとめたサーベイ
- 珍しいサーベイ
- Evaluating Cultural and Social Awareness of LLM Web Agents [113.5]
CASAは,大規模言語モデルの文化的・社会的規範に対する感受性を評価するためのベンチマークである。 提案手法は,標準に違反するユーザクエリや観察を検知し,適切に応答するLLMエージェントの能力を評価する。 実験により、現在のLLMは非エージェント環境で大幅に性能が向上していることが示された。
論文 参考訳(メタデータ) (Wed, 30 Oct 2024 17:35:44 GMT)
- 「(1) Can LLM agents detect and appropriately respond to user queries that violate cultural or social norms, such as searching for a wine gift in Iran, where it is culturally inappropriate?」というような文化的・社会的な面を考慮可能かを測るベンチマークの提案と検証。結果は「Specifically, LLMs perform considerably better in non-agent environments compared to web-based agent settings.」とやや驚き。
- エージェント設計時の注意が必要なことが分かる。