コンテンツへスキップ
- Transcending XAI Algorithm Boundaries through End-User-Inspired Design [27.9]
エンドユーザに対する説明責任重視の機能サポートの欠如は、高度なドメインにおけるAIの安全で責任ある使用を妨げる可能性がある。 我々の研究は、エンドユーザーがXAIを使用する際の技術的な問題を根底から解決することで、新たな研究課題がもたらされることを示している。 このようなエンドユーザにインスパイアされた研究質問は、AIを民主化し、クリティカルドメインにおけるAIの責任ある使用を保証することによって、社会的善を促進できる可能性がある。
論文 参考訳(メタデータ) (Thu, 18 Aug 2022 09:44:51 GMT)- XAIを32名の参加者に試したみたという論文。Explanation formの整理も参考になる。
- Mining Legal Arguments in Court Decisions [43.1]
我々は,欧州人権裁判所の手続において,法的議論のための新たな注釈体系を開発する。 まず,欧州人権裁判所(ECHR)の手続における法的議論のための新たな注釈体系を設計し,法的議論研究の理論と実践に深く根ざしている。 第二に、373の判決(トークン2.3Mと15kの注釈付き引数)の大きなコーパスをコンパイルし、注釈付けします。 最後に、法的なnlpドメインにおける最先端モデルを上回る議論マイニングモデルを訓練し、専門家による徹底的な評価を提供する。
論文 参考訳(メタデータ) (Fri, 12 Aug 2022 08:59:55 GMT)
- A Survey on Incomplete Multi-view Clustering [66.5]
病気の診断、マルチメディア分析、レコメンデーションシステムなどの実践的な応用では、サンプルのすべてのビューが利用できるわけではない。 。
論文 参考訳(メタデータ) (Wed, 17 Aug 2022 03:00:59 GMT)
- TL;DW? Summarizing Instructional Videos with Task Relevance & Cross-Modal Saliency [133.8]
- 我々は,ビデオ要約の未探索領域である指導ビデオの要約に焦点をあてる。 既存のビデオ要約データセットは、手動のフレームレベルのアノテーションに依存している。 本稿では,文脈対応の時間的ビデオエンコーダとセグメントスコアリング変換器を組み合わせた指導ビデオ要約ネットワークを提案する。
- 論文 参考訳(メタデータ) (Sun, 14 Aug 2022 04:07:40 GMT)
- Neural Embeddings for Text [14.1]
本稿では,意味的意味を深く表現する自然言語テキストの埋め込みについて提案する。 この方法では、言語モデルにテキストから学習させ、文字通りその脳を選択して、モデルのニューロンの実際の重みを取り、ベクトルを生成する。 ニューラルネットワークの埋め込みとGPT文の埋め込みを比較した。
論文 参考訳(メタデータ) (Wed, 17 Aug 2022 16:26:13 GMT)
- A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free Reinforcement Learning [86.1]
深層強化学習は、制御されていない環境での学習ポリシーに対する有望なアプローチである。 機械学習アルゴリズムとライブラリの最近の進歩と、慎重に調整されたロボットコントローラを組み合わせることで、現実世界で20分で学習できる。
論文 参考訳(メタデータ) (Tue, 16 Aug 2022 17:37:36 GMT)- (4足歩行とはいえ)既存研究を組み合わせることで現実環境の歩行を20分で学習可能という報告。
- BIC: Twitter Bot Detection with Text-Graph Interaction and Semantic Consistency [22.5]
テキストとグラフのモダリティを深くインタラクティブにし、ツイートの意味的矛盾を検知するBICという新しいモデルを提案する。 BICには、ツイートからセマンティック一貫性情報を学ぶためのセマンティック一貫性検出モジュールが含まれている。 われわれのフレームワークは、総合的なTwitterボットベンチマークの競争ベースラインを上回っている。
論文 参考訳(メタデータ) (Wed, 17 Aug 2022 14:34:40 GMT)- テキスト情報だけでなくグラフ構造を併用、かつ共通のネットワークでTwitterのBot Detectionを行うという研究。
- Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation with Large Language Models [116.3]
最先端のニューラルネットワークモデルは、教師付きトレーニングを必要とせずに、アドホックな言語タスクを解決するために使用することができる。 PromptIDEを使えば、ユーザはプロンプトのバリエーションを試すことができ、プロンプトのパフォーマンスを視覚化し、反復的にプロンプトを最適化できる。
論文 参考訳(メタデータ) (Tue, 16 Aug 2022 17:17:53 GMT)
- The LAM Dataset: A Novel Benchmark for Line-Level Handwritten Text Recognition [40.2]
手書き文字認識(HTR)は、コンピュータビジョンと自然言語処理の交差点におけるオープンな問題である。 歴史的写本を扱う際の主な課題は、紙の支持の保存、筆跡の多様性、また、同じ著者の幅広い期間にわたる変動、そして古代の表現が不十分な言語からのデータ不足などである。 本稿では,本研究の推進を目的として,60年以上にわたって1人の著者によって編集されたイタリア古写本の行単位のhtrデータセットである ludovico antonio muratori (lam) データセットを提案する。
論文 参考訳(メタデータ) (Tue, 16 Aug 2022 11:44:16 GMT)
- Multimodal Lecture Presentations Dataset: Understanding Multimodality in Educational Slides [57.9]
学習内容のマルチモーダル理解における機械学習モデルの能力を検証する。 このデータセットには,180時間以上のビデオと9000以上のスライドが,各科目から10人の講師が参加している。 マルチモーダル・トランスフォーマーであるPolyViLTを導入する。
論文 参考訳(メタデータ) (Wed, 17 Aug 2022 05:30:18 GMT)- 330本・180時間以上の動画、9000以上のスライドからなるデータセット。ライセンスはCC BY-SA-NC。text-to-figure(音声の説明から図を検索)、figure-to-text(図から音声の説明を検索)の検索タスクを前提として設計されているとのこと。既存手法、提案手法とも人間のパフォーマンスとのギャップが大きい。
- リポジトリはdondongwon/MLPDataset (github.com)