- Is ChatGPT A Good Translator? A Preliminary Study [39.2]
翻訳能力を高めるためにChatGPTが推奨するプロンプトを採用する。 多くのベンチマークテストセットを評価することで、ChatGPTは商用翻訳製品と競争的に機能することがわかった。 ChatGPTは、生物医学の要約やRedditのコメントに関する商業システムのようには機能しない。
論文 参考訳(メタデータ) (Fri, 20 Jan 2023 08:51:36 GMT) - ChatGPTの翻訳性能を評価した論文。一般的にリソースが多いといわれている言語ペア(おそらくChatGPTの学習データに多い言語)についてはかなりの性能だが、そうでない言語は苦手としているよう。また、頑健性の意味でもイマイチな結果となっている。
- とはいえ、Promptのみでの機械翻訳だと考えればかなり性能が高いという評価もできそう
A survey and taxonomy of loss functions in machine learning
- A survey and taxonomy of loss functions in machine learning [60.4]
ほとんどの最先端の機械学習技術は、損失関数の最適化を中心に進化している。 この調査は、初心者と高度な機械学習実践者の両方にとって最も重要な損失関数の参照を提供することを目的としている。
論文 参考訳(メタデータ) (Fri, 13 Jan 2023 14:38:24 GMT) - 機械学習におけるロス関数のサーベイ。これだけの内容を整理した論文(資料)はあまり見かけない気がしていて、考え方や狙いを整理するために有用。
On the State of German (Abstractive) Text Summarization
- On the State of German (Abstractive) Text Summarization [3.2]
ドイツの抽象的テキスト要約の景観を評価する。 業界において,抽象的なテキスト要約のための実用的なソリューションがいまだに欠落している理由を考察する。
論文 参考訳(メタデータ) (Tue, 17 Jan 2023 18:59:20 GMT) - ドイツ語における抽象型要約の状況。非英語という点では日本語も近い状況なのではないかと思う。
- 一方で「Within just two years, we have also seen an unbelievable influx of available summarization datasets for German, importantly extending past the narrow domains into applicationspecific fields, such as law and medicine, and totaling more than 700.000 samples across publicly available resources.」はいいなーと思ったり。日本語データセットの拡充をしていかないといけないなーと思う今日この頃。
Prompting Large Language Model for Machine Translation: A Case Study
- Prompting Large Language Model for Machine Translation: A Case Study [87.9]
我々は機械翻訳戦略の推進に関する体系的研究を行っている。 本稿では,プロンプトテンプレートと実演例選択の要因について検討する。 本稿では,モノリンガルデータの利用と,クロスリンガル,クロスドメイン,文-文書間伝達学習の実現可能性について検討する。
論文 参考訳(メタデータ) (Wed, 18 Jan 2023 11:30:05 GMT) - 機械翻訳のためのプロンプト戦略の検討
- プロンプトテンプレートの作り方や最初の例の与え方が翻訳に大きく影響するようで、その点はそうだろうと思うが、一般的に有効な戦略を作るのはなかなか難しそうとの印象。
Dataset Distlillationのサーベイ
最近よく見るデータセット蒸留のサーベイ。基本的には少ないデータで十分な性能のモデル構築ができるようなデータセット作成を目的にしているが、生データを公開しなくてもよくなる場合があり情報保護の観点からも重要な技術になりうる。アプローチも様々で興味深い。
- Dataset Distillation: A Comprehensive Review [54.3]
データセット蒸留(DD)は、いくつかの合成サンプルを含むはるかに小さなデータセットを目標としている。 本稿では,最近のDDの進歩と応用について概説する。
論文 参考訳(メタデータ) (Tue, 17 Jan 2023 17:03:28 GMT)
- A Comprehensive Survey to Dataset Distillation [91.4]
限られた計算能力で無制限に成長するデータに対処することは困難になっている。 ディープラーニング技術はこの10年で前例のない発展を遂げた。 本稿では,多面的なデータセット蒸留の総合的な理解を提供する。
論文 参考訳(メタデータ) (Fri, 13 Jan 2023 15:11:38 GMT)
Data Distillationのサーベイ
- Data Distillation: A Survey [8.5]
ディープラーニングは、膨大な数の大規模および多言語データセットのキュレーションにつながった。 個々のタスクで人間に近いパフォーマンスを持つにもかかわらず、大規模なデータセットでパラメータハングリーモデルをトレーニングすることは、多面的な問題を引き起こす。 データ蒸留アプローチは、元のデータセットの効果的なドロップイン置換として機能する、簡潔なデータ要約を合成することを目的としている。
論文 参考訳(メタデータ) (Wed, 11 Jan 2023 02:25:10 GMT)
AI Maintenance: A Robustness Perspective
- AI Maintenance: A Robustness Perspective [91.3]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。 本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。 我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (Sun, 8 Jan 2023 15:02:38 GMT) - AIメンテナンスに関するフレームワークの提案。妥当・合理的かは議論が分かれると思うが、頭の整理をするには有用。
Graphix-T5
- Graphix-T5: Mixing Pre-Trained Transformers with Graph-Aware Layers for Text-to-SQL Parsing [56.2]
テキストからテキストへのパースにおける大きな課題の1つはドメインの一般化である。我々は,グラフ認識層によって拡張された標準事前学習トランスフォーマモデルを用いた混合モデルであるgraphix-t5を提案する。 大規模な実験と分析により、SPIDER、Syn、REALISTIC、DKの4つのテキスト-SQLベンチマークにおける GraphIX-T5の有効性が示されている。
論文 参考訳(メタデータ) (Wed, 18 Jan 2023 13:29:05 GMT) - グラフ構造(としてER)を扱うことによってテキストからのSQL生成の性能を向上させたとの報告。この手のSQL生成支援機能が実装される例が増えてきており興味深い
- リポジトリはDAMO-ConvAI/graphix at main · AlibabaResearch/DAMO-ConvAI · GitHubとのこと。現時点ではcoming soon
Synthcity
- Synthcity: facilitating innovative use cases of synthetic data in different data modalities [86.5]
Synthcityは、MLフェアネス、プライバシ、拡張における合成データの革新的なユースケースのための、オープンソースのソフトウェアパッケージである。 Synthcityは、実践者に対して、合成データにおける最先端の研究とツールへの単一のアクセスポイントを提供する。
論文 参考訳(メタデータ) (Wed, 18 Jan 2023 14:49:54 GMT) - 合成データ作成のための一連のソフトウェアパッケージ。Apache-2ライセンスのオープンソースソフトウェア
- リポジトリはGitHub – vanderschaarlab/synthcity: A library for generating and evaluating synthetic tabular data for privacy, fairness and data augmentation.
LinkGAN
- LinkGAN: Linking GAN Latents to Pixels for Controllable Image Synthesis [63.6]
この研究は、GANトレーニングのための使い易い正規化器を示し、潜在空間のいくつかの軸を画像領域や意味圏に明示的にリンクするのに役立つ。 実験の結果,LinkGANと呼ばれる正則化器の4つの魅力特性が確認された。
論文 参考訳(メタデータ) (Wed, 11 Jan 2023 17:56:36 GMT) - 任意の領域のみを対象とした生成ができる手法の提案
- プロジェクトサイトはLinkGAN: Linking GAN Latents to Pixels for Controllable Image Synthesis (zhujiapeng.github.io)