コンテンツへスキップ
- More ConvNets in the 2020s: Scaling up Kernels Beyond 51×51 using Sparsity [103.6]
最近、いくつかの先進的な畳み込みモデルが、局所的だが大きな注意機構によって動機付けられた大きなカーネルで後退している。 本稿では,51×51カーネルを備えた純粋なCNNアーキテクチャであるSparse Large Kernel Network (SLaK)を提案する。
論文 参考訳(メタデータ) (Thu, 7 Jul 2022 23:55:52 GMT)
- DavarOCR: A Toolbox for OCR and Multi-Modal Document Understanding [27.0]
DavarOCRは、OCRとドキュメント理解タスクのためのオープンソースのツールボックスである。 DavarOCRは19の高度なアルゴリズムを実装し、9つのタスク形式をカバーする。
論文 参考訳(メタデータ) (Thu, 14 Jul 2022 06:54:47 GMT)
- DocCoder: Generating Code by Retrieving and Reading Docs [87.9]
コードマニュアルとドキュメントを明示的に活用するアプローチであるDocCoderを紹介します。 我々のアプローチは一般的に、どんなプログラミング言語にも適用でき、基礎となるニューラルモデルとは無関係です。
論文 参考訳(メタデータ) (Wed, 13 Jul 2022 06:47:51 GMT)
- COO: Comic Onomatopoeia Dataset for Recognizing Arbitrary or Truncated Texts [47.5]
日本語漫画におけるオノマトペのテキストからなる新しい漫画オノマトペデータセット(COO)を提供する。 COOは、非常に湾曲した、部分的に縮小したテキスト、任意に配置されたテキストなど、多くの任意のテキストを持っている。 我々は,オノマトペ領域を検出し,その意図した意味を捉えるために,テキスト検出,テキスト認識,リンク予測という3つのタスクを実行する。
論文 参考訳(メタデータ) 参考訳(全文) (Mon, 11 Jul 2022 07:39:35 GMT)
- BigBIO: A Framework for Data-Centric Biomedical Natural Language Processing [13.3]
バイオメディカルNLPデータセット126以上のコミュニティライブラリであるBigBIOを紹介する。 BigBIOは、データセットとそのメタデータへのプログラムアクセスを通じて、再現可能なメタデータキュレーションを容易にする。 本稿では,タスクスキーマ,データ監査,コントリビューションガイドライン,および2つの実証的ユースケースの概要について論じる。
論文 参考訳(メタデータ) (Thu, 30 Jun 2022 07:15:45 GMT)- バイオ・医療分野のデータセット。126のデータセットがありタスクカテゴリは以下の12とのこと。
- Knowledge Base (KB)
- Named entity recognition (NER)
- Named entity disambiguation/normalization/linking (NED)
- Event extraction (EE)
- Relation extraction (RE)
- Coreference resolution (COREF)
- Question Answering (QA)
- Textual Entailment (TE)
- Text Pairs (PAIRS)
- Semantic Similarity (STS)
- Text to Text (T2T)
- Paraphasing (PARA)
- Translation (TRANSL)
- Summarization (SUM)
- Text (TEXT)
- Text classification (TXTCLASS)
- Quantum Neural Network Compression [23.2]
量子ニューラルネットワークと古典ニューラルネットワークの圧縮には相違点があることが示されている。 我々は、量子ニューラルネットワークを圧縮する最初の体系的フレームワーク、CompVQCを提案する。
論文 参考訳(メタデータ) (Tue, 5 Jul 2022 15:19:43 GMT)- Quantum Neural Networks (QNNs)の性質を利用したモデル圧縮。量子ニューラルネットワークが流行るかは分からないが、通常のモデルとの違いが面白い。
- Solving the Traveling Salesperson Problem with Precedence Constraints by Deep Reinforcement Learning [59.1]
本研究は, 深層強化学習(DRL)を用いた優先制約付きトラベリングセールスパーソン問題(TSPPC)の解を提案する。 これらのアプローチに共通しているのは、マルチヘッドアテンション層に基づくグラフモデルの利用である。
論文 参考訳(メタデータ) 参考訳(全文) (Mon, 4 Jul 2022 14:31:47 GMT)
- Enabling Harmonious Human-Machine Interaction with Visual-Context Augmented Dialogue System: A Review [40.5]
Visual Context Augmented Dialogue System (VAD) は、マルチモーダル情報を知覚し理解することで人間とコミュニケーションする能力を持つ。 VADは、エンゲージメントとコンテキスト対応の応答を生成する可能性を秘めている。
論文 参考訳(メタデータ) (Sat, 2 Jul 2022 09:31:37 GMT)- マルチモーダルな情報を利用する対話システムのサーベイ。
- Transfer Learning with Deep Tabular Models [66.7]
正確性はさておき、ニューラルモデルの大きな利点は、再利用可能な機能を学び、新しいドメインで簡単に微調整できることだ。上流データにより、ニューラルネットワークはGBDTモデルよりも決定的な優位性を示す。 そこで本研究では,表在化学習のための現実的な診断ベンチマークを提案する。 上流と下流の特徴セットが異なる場合の擬似特徴法を提案する。
論文 参考訳(メタデータ) 参考訳(全文) (Thu, 30 Jun 2022 14:24:32 GMT)
- Not All Models Are Equal: Predicting Model Transferability in a Self-challenging Fisher Space [51.6]
本稿では、トレーニング済みのディープニューラルネットワークのランク付けと、下流タスクにおける最も転送可能なニューラルネットワークのスクリーニングの問題に対処する。 Self-challenging Fisher Discriminant Analysis (SFDA)と呼ばれる新しい転送可能性指標を提案する。
論文 参考訳(メタデータ) (Thu, 7 Jul 2022 01:33:25 GMT)