CommonsenseQA 2.0: ゲーミフィケーションにより収集されたQAデータセット

  • CommonsenseQA 2.0: Exposing the Limits of AI through Gamification [126.9]
    現代自然言語理解モデルの能力をテストするベンチマークを構築した。 本研究では,データ構築の枠組みとしてゲーミフィケーションを提案する。
    論文  参考訳(メタデータ)   (Fri, 14 Jan 2022 06:49:15 GMT)
    • 高品質なデータを収集するため「AIを打ち負かす」ゲーミフィケーションを用いてベンチマークを構築。最善のモデル(11BパラメータのUNICORN)でも人間に比べて大幅にスコアが低い難しいデータセットとのこと。
    • プロジェクトサイトはExposing the limits of AI through Gamification | CommonsenseQA 2.0 (allenai.github.io)、データのライセンスはCC-BYとのこと。

Multilingual Machine Translationの実践的アプローチ

  • Towards the Next 1000 Languages in Multilingual Machine Translation: Exploring the Synergy Between Supervised and Self-Supervised Learning [48.2]
    数百の言語をカバーする多言語機械翻訳モデルを構築するための実践的なアプローチを提案する。 私たちは、異なる言語ペアのデータ可用性に応じて、教師付きと自己監督型の目的の混合を使用します。 この2つのトレーニングパラダイム間の相乗効果により、ゼロリソース設定で高品質な翻訳を生成できることを実証する。
    論文  参考訳(メタデータ)   (Thu, 13 Jan 2022 18:09:08 GMT)
    • 多言語機械翻訳モデルの実現に向けた様々な実験結果が参考になる。モデルが対応する言語数の増減、linguistic similarityを考慮した増減、パラ / モノリンガルデータ数が与える影響、ドメイン相違の影響、pretraining / finetuning / co-training / iterative back translationなど学習方法の影響など様々な観点があり興味深い。

大気汚染防止のためのDeep Learningを用いたダイナミックプライシング

  • Dynamic Price of Parking Service based on Deep Learning [68.8]
    都市部における空気質の向上は、公共団体の主な関心事の一つである。 この懸念は、大気の質と公衆衛生の間の証拠から生じる。 規制された駐車場サービスにおける動的価格の提案について述べる。
    論文  参考訳(メタデータ)  参考訳(全文)  (Tue, 11 Jan 2022 20:31:35 GMT)
    • ダイナミックプライシングにDeep Learningを活用。CNN, LSTM, U-Timeを比較している。手法選択はともかくとして、大気汚染防止のためという目的が興味深い。

Homepage2Vec

  • Language-Agnostic Website Embedding and Classification [12.9]
    92言語で100万以上のWebサイトを持つデータセットをリリースし、Curlieから相対ラベルを収集しました。 ホームページに基づいてWebサイトを分類・埋め込みするマシン学習モデルであるHomepage2Vecを紹介する。 Homepage2Vecは、マクロ平均F1スコア0.90のWebサイトを正しく分類し、低および高ソース言語で安定したパフォーマンスを示す。
    論文  参考訳(メタデータ)   (Mon, 10 Jan 2022 22:31:48 GMT)

SCROLLS(Standardized CompaRison Over Long Language Sequences): 長いシーケンスに対する自然言語処理

  • SCROLLS: Standardized CompaRison Over Long Language Sequences [62.6]
    SCROLLSは長いテキストに対する推論を必要とするタスクのスイートである。 SCROLLSには要約、質問応答、自然言語推論タスクが含まれる。 すべてのデータセットを統一されたテキスト・ツー・テキスト形式で利用可能にし、モデルアーキテクチャと事前学習方法の研究を容易にするために、ライブのリーダーボードをホストします。
    論文  参考訳(メタデータ)   (Mon, 10 Jan 2022 18:47:15 GMT)

視線情報を併用したNLPのサーベイ

  • A Survey on Using Gaze Behaviour for Natural Language Processing [35.8]
    本稿では,自然言語処理(NLP)における異なるタスクをテスト時に記録することなく,目視行動を用いて解く方法について論じる。我々は複数の言語で異なる視線追跡コーパスについて言及し、これは現在利用可能であり、自然言語処理で使用することができる。 本稿は、ドメイン — 教育 — における応用と、複雑な単語識別と自動エッセイグレーディングの課題を解決する上で、視線行動の学習がいかに役立つかを議論することによって、論文を締めくくる。
    論文  参考訳(メタデータ)  参考訳(全文)  (Mon, 3 Jan 2022 12:58:53 GMT)

空中監視タスクのサーベイ

  • The State of Aerial Surveillance: A Survey [62.2]
    本稿では、コンピュータビジョンとパターン認識の観点から、空中監視タスクの概要を概観する。 主な対象は人間であり、単体または複数の被験者が検出され、特定され、追跡され、再同定され、その振る舞いが分析される。
    論文  参考訳(メタデータ)   (Sun, 9 Jan 2022 20:13:27 GMT)
    • ドローン等を用いて空中から人を監視するタスクのサーベイ。対象のタスクはdetection, tracking, identification, action recognition。データセットの概要やモデル、難しさ(課題)など非常に参考になる。
      • 未解決の課題は画像処理分野一般に言えることだと思うが、撮像時の解像度の低さや環境ノイズの多さのカバーやOnboard computingの重要性などはこの分野で特徴的なのかなと思った。

「Related Work」の自動生成に関するサーベイ

  • Automatic Related Work Generation: A Meta Study [5.0]
    自然言語処理では、通常「関連作業」という節で文献レビューが行われる。 自動作業生成の課題は, 「関連作業」 セクションを自動生成することである。 本稿では,問題定式化,データセット収集,方法論的アプローチ,性能評価,今後の展望の観点から,関連作業生成に関する既存の文献をメタスタディで比較する。
    論文  参考訳(メタデータ)   (Thu, 6 Jan 2022 01:16:38 GMT)
    • 論文にだいたいある「Related works」を自動生成することを目的とした研究のサーベイ。有用そう&今であれば出来そうな気もしつつ難しそうな気もするタスクであるが、サーベイからは発展途上との印象をうける。

LSeg: 言語駆動型のセマンティックセグメンテーション

  • Language-driven Semantic Segmentation [88.2]
    本稿では,言語駆動型セマンティックイメージセグメンテーションの新しいモデルLSegを提案する。 テキストエンコーダを用いて記述型入力ラベルの埋め込みを計算する。 エンコーダは、画素埋め込みを対応するセマンティッククラスのテキスト埋め込みに合わせるために、対照的な目的で訓練される。
    論文  参考訳(メタデータ)   (Mon, 10 Jan 2022 18:59:10 GMT)
    • BackboneとなるVisionのモデル(ViT or ResNet)にCLIPを組み合わせることでゼロショットでの(ラベルを任意に設定可能な)セマンティックセグメンテーションを実現。マルチモーダルな処理に可能性と未来を感じる。
    • リポジトリはGitHub – isl-org/lang-seg: Language-Driven Semantic Segmentation

ConvNeXt: ResNetの近代化

  • A ConvNet for the 2020s [94.9]
    ビジョントランスフォーマー(ViT)は、最先端の画像分類モデルとしてすぐにConvNetsに取って代わった。 これは、いくつかのConvNetプリエントを再導入した階層型トランスフォーマーであり、トランスフォーマーは一般的なビジョンバックボーンとして実用的である。 本研究では、設計空間を再検討し、純粋なConvNetが達成できることの限界をテストする。
    論文  参考訳(メタデータ)  参考訳(全文)  (Mon, 10 Jan 2022 18:59:10 GMT)