SafeWorld: Geo-Diverse Safety Alignment

  • SafeWorld: Geo-Diverse Safety Alignment [107.8]
    大規模言語モデル(LLM)を評価するために特別に設計された新しいベンチマークであるSafeWorldを紹介する。 SafeWorldには2,342のユーザクエリが含まれており、それぞれ50か国と493のリージョン/ラストから、高品質で人間認証された文化規範と法的ポリシーを基礎としている。 トレーニングされたSafeWorldLMは、GPT-4oを含む競合モデルの3つの評価次元を大きなマージンで上回ります。
    論文  参考訳(メタデータ)   (Mon, 09 Dec 2024 13:31:46 GMT)
  • 安全性評価のためのベンチマーク、「SAFEWORLD encompasses 2,342 test user queries, each grounded in high-quality, human-verified cultural norms and legal policies from 50 countries and 493 regions/races.」と文化的側面に注意が払われている。
  • リポジトリはGitHub – PlusLabNLP/SafeWorld

Machine Unlearning Doesn’t Do What You Think: Lessons for Generative AI Policy, Research, and Practice

  • Machine Unlearning Doesn’t Do What You Think: Lessons for Generative AI Policy, Research, and Practice [186.1]
    非学習はしばしば、生成AIモデルからターゲット情報の影響を取り除くソリューションとして呼び出される。 未学習はまた、モデルが出力中にターゲットとなるタイプの情報を生成するのを防ぐ方法として提案されている。 これら2つの目標 – モデルからの情報の標的的除去と、モデル出力からの情報のターゲット的抑制 – は、様々な技術的および現実的な課題を表す。
    論文  参考訳(メタデータ)   (Mon, 09 Dec 2024 20:18:43 GMT)
  • Machine unlearningに関する包括的な情報。「despite the intuitive alignment of the meanings of the words “removal” and “deletion,” it is unclear if technical removal is indeed necessary to satisfy deletion requirements in law and policy.」など技術的な部分以外への言及に力を入れた整理でとても参考になる。

Political-LLM: Large Language Models in Political Science

  • Political-LLM: Large Language Models in Political Science [160.0]
    大規模言語モデル(LLM)は、政治科学のタスクで広く採用されている。 政治LLMは、LLMを計算政治科学に統合する包括的な理解を促進することを目的としている。
    論文  参考訳(メタデータ)   (Mon, 09 Dec 2024 08:47:50 GMT)
  • 「In this work, we—a multidisciplinary team of researchers spanning computer science and political science—present the first principled framework termed Political-LLM to advance the comprehensive understanding of integrating LLMs into computational political science.」、「The intended audience of this survey includes (1) computer science researchers and practitioners who seek a structured understanding of how LLMs are applied in political science, aiming to bridge interdisciplinary gaps; and (2) political science researchers and practitioners who seek to leverage LLMs in ways that are sensitive to the unique requirements of their field, such as nuanced interpretation and contextual accuracy [57].」ということで、政治へのLLM応用について調査したサーベイ。政治とあるが社会的なLLMの活用方針についての示唆も多く参考になる点が多い。プロジェクトサイトのライセンスがCC BY-SAであるのはありがたい。
  • プロジェクトサイトはPolitical-LLM: Large Language Models in Political Science

Survey of Cultural Awareness in Language Models: Text and Beyond

  • Survey of Cultural Awareness in Language Models: Text and Beyond [39.8]
    大規模言語モデル(LLM)を様々なアプリケーションに大規模に展開するには、LCMはインクリビティを確保するために、ユーザに文化的に敏感である必要がある。 文化は心理学や人類学で広く研究され、近年、LLMをより文化的に包括的にする研究が急増している。
    論文  参考訳(メタデータ)   (Wed, 30 Oct 2024 16:37:50 GMT)
  • 「Culture has been widely studied in psychology and anthropology, and there has been a recent surge in research on making LLMs more culturally inclusive in LLMs that goes beyond multilinguality and builds on findings from psychology and anthropology.」という近年重要性が増しているLLMと文化についてのサーベイ。
  • リポジトリはGitHub – siddheshih/culture-awareness-llms

Constrained Human-AI Cooperation: An Inclusive Embodied Social Intelligence Challenge 

  • Constrained Human-AI Cooperation: An Inclusive Embodied Social Intelligence Challenge [47.7]
    CHAICは、インボディードエージェントの社会的知覚と協力をテストするために設計された包括的インボディード・ソーシャル・インテリジェンス・チャレンジである。 CHAICの目標は、身体的制約の下で活動している可能性がある人間を支援するために、自我中心の観察装置を備えたエンボディエージェントである。
    論文  参考訳(メタデータ)   (Mon, 04 Nov 2024 04:41:12 GMT)
  • 「In CHAIC, the goal is for an embodied agent equipped with egocentric observations to assist a human who may be operating under physical constraints—e g , unable to reach high places or confined to a wheelchair—in performing common household or outdoor tasks as efficiently as possible.」というタスク・ベンチマークの提案。このようなチャレンジが現実的になってきたことにAIの急速な進化を感じる。
  • リポジトリはGitHub – UMass-Foundation-Model/CHAIC: [NeurIPS D&B Track 2024] Source code for the paper “Constrained Human-AI Cooperation: An Inclusive Embodied Social Intelligence Challenge”

Evaluating Cultural and Social Awareness of LLM Web Agents

  • Evaluating Cultural and Social Awareness of LLM Web Agents [113.5]
    CASAは,大規模言語モデルの文化的・社会的規範に対する感受性を評価するためのベンチマークである。 提案手法は,標準に違反するユーザクエリや観察を検知し,適切に応答するLLMエージェントの能力を評価する。 実験により、現在のLLMは非エージェント環境で大幅に性能が向上していることが示された。
    論文  参考訳(メタデータ)   (Wed, 30 Oct 2024 17:35:44 GMT)
  • 「(1) Can LLM agents detect and appropriately respond to user queries that violate cultural or social norms, such as searching for a wine gift in Iran, where it is culturally inappropriate?」というような文化的・社会的な面を考慮可能かを測るベンチマークの提案と検証。結果は「Specifically, LLMs perform considerably better in non-agent environments compared to web-based agent settings.」とやや驚き。
  • エージェント設計時の注意が必要なことが分かる。

DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life

  • DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life [46.1]
    日常生活で遭遇した1,360の道徳的ジレンマのデータセットであるDailyDilemmasを提示する。 それぞれのジレンマは2つの可能なアクションを含み、それぞれのアクションでは、影響を受ける当事者と人間の価値が呼び出される。 我々は、社会学、心理学、哲学に触発された5つの一般的な理論のレンズを通して、これらの価値を分析した。
    論文  参考訳(メタデータ)   (Thu, 03 Oct 2024 17:08:52 GMT)
  • 道徳的ジレンマのデータセット
  • リポジトリはhttps://github.com/kellycyy/daily_dilemmas

Biased AI can Influence Political Decision-Making 

  • Biased AI can Influence Political Decision-Making [64.9]
    本稿では、AI言語モデルにおけるパルチザンバイアスが政治的意思決定に及ぼす影響について検討する。 政治的に偏見のあるモデルに晒された参加者は、意見を採用し、AIの偏見と一致した決定を下す可能性が著しく高いことがわかった。
    論文  参考訳(メタデータ)   (Tue, 08 Oct 2024 22:56:00 GMT)
  • 「We found that participants exposed to politically biased models were significantly more likely to adopt opinions and make decisions aligning with the AI’s bias, regardless of their personal political partisanship.」、「However, we also discovered that prior knowledge about AI could lessen the impact of the bias, highlighting the possible importance of AI education for robust bias mitigation.」という指摘。教育の効果はあるようだが、今後問題は大きくなっていくんじゃないかと思う。。

HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions

  • HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.4]
    本稿では,多様な複雑な社会的相互作用におけるAIエージェントの安全性を調べるフレームワークであるHAICOSYSTEMを提案する。 私たちは7つの領域(医療、金融、教育など)にわたる92のシナリオに基づいて1840のシミュレーションを実行します。 我々の実験は、最先端のLSMは、プロプライエタリかつオープンソースの両方で、50%以上のケースで安全リスクを示すことを示した。
    論文  参考訳(メタデータ)   (Tue, 24 Sep 2024 19:47:21 GMT)
  • AIエージェントの安全性を確かめるフレームワークの提案
  • プロジェクトサイトはAN ECOSYSTEM FOR SANDBOXING SAFETY RISKS IN HUMAN-AI INTERACTIONS (haicosystem.org)

Trustworthiness in Retrieval-Augmented Generation Systems: A Survey 

  • Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.3]
    Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。 本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
    論文  参考訳(メタデータ)   (Mon, 16 Sep 2024 09:06:44 GMT)
  • 信頼できるAIに関するサーベイはよくあるがRAGを対象としたものは珍しいように思う。
  • リポジトリはGitHub – smallporridge/TrustworthyRAG